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Abstract

This masters thesis reports research and design activities related to the
construction of a model of a pulsed hollow cathode discharge in xenon.
Pulsed hollow cathode discharges are under consideration for the produc-
tion of extreme ultraviolet (EUV) radiation for use in lithographic systems.
Shorter wavelengths are required by industry to continue the present trend
towards smaller structures in integrated circuits. In the pulsed hollow cath-
ode discharges for the production of EUV light, several Joule of energy are
pumped into a small device (approximately 10 cm3) filled with xenon, to a
low pressure of 20 Pascal. A violent discharge follows and EUV radiation is
emitted. The discharge lasts only some 100 ns.

The highly transient nature of the discharge, together with the low pres-
sure, results in a plasma which is far from equilibrium. Essential features
of a hollow cathode discharge, such as the “pendulum” effect, are non-local.
The plasma in a pulsed hollow cathode discharge is, therefore, very difficult
to model.

After examining existing methods of modeling pulsed hollow cathode
discharges, the choice was made to use plasimo, a plasma simulation model
developed at Eindhoven University of Technology, as part of a hybrid fluid-
Monte Carlo model. A number of extensions have been added to facilitate
the modeling of this type of highly transient discharge. These extensions
have been verified using a number of test cases.

More specifically: a diffusion model has been implemented that solves
the transport equation for the electrons without assuming quasi-neutrality,
an extension has been added that solves the Poisson equation given the space
charge distribution, an interface has been built that allows the use of the
Monte Carlo code from Micro-dis to calculate ionization rates in plasimo
and an extension has been added that injects electrons into the particle
kinetic model to simulate secondary electron emission from the surfaces of
the hollow cathode.

A number of issues, however, remain to be solved before a working model
can be constructed. From the examination of the results of one of the test
cases it has become clear that a different approach is required to solving the
momentum balance without using the drift-diffusion equation. Additionally,
parts of the plasimo code need to be rewritten to allow for the use of more
complex geometries than the present rectangular grids.
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Chapter 1

Introduction

1.1 Preface

This masters thesis reports research and design activities related to the con-
struction of a model of a pulsed hollow cathode discharge in xenon. The re-
search was carried out at the group Elementary Processes in Gas discharges
(EPG) at Eindhoven University of Technology. Pulsed hollow cathode dis-
charges are under consideration for the production of extreme ultraviolet
(EUV) radiation for use in lithographic systems. Shorter wavelengths are
required by industry to continue the present trend towards smaller struc-
tures in integrated circuits. In particular, light with a wavelength between
11 and 14 nm is required. In the pulsed hollow cathode discharges for the
production of EUV light, several Joule of energy are pumped into a small
device (approximately 10 cm3) filled with xenon, to a low pressure of 20
Pascal. A violent discharge follows, ionizing the xenon to Xe12+ or higher
and emitting EUV radiation. The discharge is highly transient and lasts
only some 100 ns. Hence, the devices are operated in pulsed mode.

1.2 Technology Assessment

The hollow cathode discharges (HCD’s) studied in this report are intended
for the generation of radiation in lithographic systems for the production
of integrated circuits. Therefore, we will shortly asses the development of
these lithographic systems and the integrated circuits they produce.

The integrated circuits used in computers and other electronic devices
have increased in complexity over the years. There is a clear trend to fabri-
cate increasingly smaller structures on chips to allow for more components
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on the same chip while subsequently allowing for the increase of the clock
speed of these devices. The 8008 processor, introduced by Intel r© in 1972,
and used in one of the first computers for home use, the Mark-81, contained
3,500 transistors operating at a clock speed of 500-800 kHz. The processor
was built using 10 micrometer technology. Now thirty years later, Pentium
IV r© processors from the same company are built to run at clock speeds of
2-3 GHz, containing 55 million processors and built using 0.13 micrometer
technology2.

The plan of manufacturers of chips and lithographic systems alike is to
continue on the road to increasingly smaller structures. This implies that
the wavelength of the radiation used has to decrease accordingly since the
wavelength puts a fundamental lower limit on the size of the structures. The
continuation of the current miniaturization trend will require radiation with
a wavelength much smaller than that what is used today.

This desire for smaller wavelength radiation is the driving force behind
the research in hollow cathode devices for the production of extreme ultra-
violet (EUV) radiation.

The shortest wavelengths for use in optical lithography to date is 157
nm. This radiation is called deep ultraviolet or DUV radiation. The imag-
ing systems use lenses made from pure calcium fluoride[1]. However, there
are no materials available that are sufficiently transparent to radiation of
wavelengths shorter than 157 nm. Therefore, further reduction is only pos-
sible by using reflective systems. By using mirrors consisting of thin multiple
layers, called distributed Bragg reflectors, a reasonable reflectivity is possi-
ble in the region between 11 and 14 nm. This radiation lies in the region of
the spectrum, from 1 to 40 nm, called extreme ultraviolet radiation (EUV)
but also known as vacuum ultraviolet (VUV) or soft X-Ray radiation [2].

Several sources for this radiation exist. An overview of all possible
sources and a comparison on their performance is given by Stuik[3]. This
study focuses on a pulsed HCD filled with xenon.

1.3 Pulsed Hollow Cathode Discharges for EUV
Production

A hollow cathode of the type for EUV production is shown in figure 1.1.
The discharge in such devices is highly transient. When the discharge is
triggered, electrical breakdown follows with a rate of current rise reaching

1 http://www.ics.uci.edu/ givargis/courses/217/articles/intel-timeline.pdf
2 http://www.intel.com/pressroom/kits/quickreffam.htm
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Figure 1.1: A schematic drawing of a hollow cathode of the type being
considered for the production of EUV radiation. The diameter and height
of the hollow cathode under study are both about 1.5 cm. The hollow
cathode is filled with xenon to a pressure of approximately 20 Pascal. The
potential difference between anode and cathode is 5 kV.

as high as 1012 A/s. The total duration of the discharge is some 100 ns
during which the xenon rapidly ionizes. From time resolved spectroscopy
performed with a pinhole camera, radiation from the 4d-4f transition in
Xe12+ was observed, with evidence of the presence of Xe13+ [4]. Large
currents (of the order of kA) are reached. This results in a pinched plasma
emitting a EUV light. In one test, involving a 2 J pulse, 2.6 mJ of EUV
radiation is emitted in a two percent band width around 13.4 nm [3], p. 62.

The highly transient nature of the discharge, together with the low pres-
sure, results in a plasma which is far from equilibrium. The electron density
increases from an initial value between 1013 to 1015 m−3 at the beginning of
the pulse (depending on the repeat rate) to 1024 m−3 in the pinch. Essen-
tial features of a HCD, such as the “pendulum” effect, are non-local. The
plasma in a pulsed HCD is, therefore, very difficult to model. After exam-
ining existing models of the hollow cathode the choice has been made to
build a hybrid fluid-Monte Carlo model. At the group EPG two modeling
platforms exist: plasimo and Micro-dis, also known as MD2D. The choice
has been made to extend the former, because of its handling of the energy
balance equations for all species. However, when this project was started
plasimo could only handle quasi-neutrality and isotropic diffusion.

Therefore, extensions have been made to remove the quasi-neutrality
assumption. To solve the electric field needed in this diffusion model a
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Poisson solver has been added and tested.
Further extensions have been made to allow for anisotropic diffusion as

a modification of the current fluid models. To allow for an even further
departure from equilibrium a particle kinetic model, using Monte Carlo col-
lisional (MCC) methods, has been added to plasimo . This addition allows
the calculation of ionization rates from non-local effects in plasmas with a
non-Maxwellian energy distribution function. To this end an interface has
been build to use the Monte Carlo code from Micro-dis. The addition of
such a particle kinetic model turns plasimo into a hybrid fluid-Monte Carlo
model.

1.4 Overview

This report is organized as follows: After this short introduction we start
out with a qualitative description of a complete cycle in the operation of a
pulsed HCD. Directly following this qualitative description we analyze ex-
isting models and their limitations. The required extensions are discussed
in chapter 6. These extensions are then tested. In particular we discuss test
cases for the Poisson solver in chapter 7 and the particle kinetic model in
chapters 8 and 9. We conclude with recommendations for future research
to complete the project. Matters concerning the implementation in C++ of
extensions (or proposed extensions) to the code are discussed in the appen-
dices.
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Chapter 2

Pseudospark Discharges

If a high enough voltage is applied across a gas between two parallel elec-
trodes breakdown occurs. Free electrons in the gas, always present in very
low numbers, are accelerated by the electric field and collide with the neu-
tral atoms or molecules in the gas. If the electric field is high enough some
of the electrons will succeed in ionizing a molecule before being lost on the
positive electrode. If more electrons are released by ionization than lost at
electrodes breakdown occurs; the gas is ionized and conducts electricity. The
voltage at which electrical breakdown occurs is a function of the distance
times the pressure. This function is called the Paschen curve (see figure
2.1)[5]. For more complex geometries the Paschen curve can be used as a
first approximation [6]. Each gas has its own curve.

Different sections of the curve correspond with different types of dis-
charges. At higher pressures discharge streamers are formed, slightly lower
pressures yield glow discharges and at the left side branch of the curve
pseudospark discharges occur. The term ”pseudospark discharge” was first
coined by Christiansen and Schulteiss in 1979 [7]. For specific geometries,
at low pressures and beyond a breakdown voltage, a diffuse discharge oc-
curs which bears resemblance to spark discharges even though the regime
in which these diffuse discharges occur differs from that of real spark dis-
charges. Hence the name pseudospark discharge.

Using special geometries and/or insulating materials at the edges of the
anode and cathode in this regime results in a diffuse discharge with quickly
increasing currents. Currents rise rates can be as high as 1012 A/s1. If the
anode contains a central hole an electron beam is emitted.

The pseudospark devices studied by Christiansen et al. were intended

1 http://www.hcei.tsc.ru/ssi/techn/tech15 en.shtml
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Figure 2.1: Typical Paschen curve.

for use as particle accelerators [7]. Stacks of them can be used to generate
intense electron beams with densities exceeding 106 A/m2 [7, 8]. A number
of other applications exist. Because of their abrupt transition to a highly
conductive state and relatively low jitter, they are frequently used in high-
power switching applications [8, 9]. HCD’s are also used for spectroscopic
analysis [10]. More recently, they are being considered as a source of extreme
ultraviolet (EUV) radiation. When filled with xenon, tin or lithium the gas
rapidly becomes ionized to multiply ionized states. In xenon this can go to
Xe12+, emitting radiation in the band around 13.5 nm [4, 11]. This radiation
can be used for lithography where the increasing demand for smaller struc-
tures requires shorter wavelengths[3, 11]. In figure 2.2 schematic drawings
for some of these pseudospark devices are given.

The main focus of this report will be to find modeling tools to describe
the initial breakdown a of hollow cathode of the type being considered for the
production of EUV radiation. Devices of this type are operated in a pulsed
mode. Studying the operation directly before and during breakdown is of
great interest in these devices. Operation in lithographic systems require a
high reliability. Predictable and reliable startup times are needed to achieve
a high repeat rate for the discharge. A high repeat rate is, in turn, necessary
to achieve a sufficiently intense light production on the target.
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Figure 2.2: Several pseudospark devices. 1. A single gap device of the type
investigated by Christiansen. 2. A Hollow cathode for EUV production. 3.
A poly-plate system to produce an electron beam. The primary focus of the
work presented in this document will be on type 2.
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Chapter 3

Stages in the Operation
Cycle of a Hollow Cathode

Pseudospark devices are operated in a pulsed mode. A capacitor bank is
charged for every pulse, prior to discharge. Then the discharge is triggered,
draining the capacitators, whereafter they are recharged. In general there
are two methods of controlling the timing of the discharge. One is to apply a
voltage just below the breakdown voltage and to use a trigger of some kind,
either optical (by shooting a laser pulse through the discharge), or electrical
to initiate the discharge. Another method to initiate the discharge is to
apply a voltage greater than that required for spontaneous discharge and to
use an electrical inhibitor. The inhibitor increases the voltage required for
breakdown. The discharge is then initiated by releasing the inhibitor.

Each cycle can be broken down in a number of different phases. Bloess [8]
describes two main phases in the breakdown based on experimental evidence,
namely the pre-breakdown phase and the proper breakdown phase. This is
expanded by Pitchford [9] to five. However, for the purpose of describing a
full cycle, one needs to consider an additional last phase, the decay of the
plasma. These six phases will be described next in order of their appearance,
with the hollow cathode for EUV generation as the primary example of a
pseudospark device.

1. Townsend phase At the start of the discharge the ionization degree
is low, the ions and free electrons which are present result from the
trigger, photoionization by background radiation, and/or ions left over
from the last discharge. The electric field is determined by the geom-
etry of the device as the total space charge from charged particles is
negligible. As a result, the equipotential surfaces between anode and
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cathode are nearly parallel to the anode. The field is large in the gap
between the anode and cathode and is small inside the hollow cathode
itself (see also figure 3a).

The strong electric field accelerates the electrons, whose mobility is
much greater than that of the ions, towards the anode. These elec-
trons are either propelled out of the device or absorbed by the anode.
This results in a positive space charge. Secondary electrons emitted
from the inside surface of the hollow cathode by ion impact contribute
to the buildup of space charge by creating avalanches of ionization
events. During this phase the mean free path of the electrons is long
compared to the typical dimension of the device. This also means that
the average number of ionization collisions a free electron causes be-
fore being absorbed by the anode is low. The high energy electrons
travel only a short distance before being absorbed by the anode or
accelerated out of the device. The electron multiplication factor

M = −
∫
anode

~je · d~s∫
cathode

~je · d~s
,

with ~je the electron current density, is low in this phase. In the case
of triggered discharges: M < 1+ 1

γ , where γ is the secondary electron-
emission coefficient. In cases of self-breakdown or breakdown following
the release of an inhibitor, M is somewhat larger than 1 + 1

γ .

2. Plasma formation The buildup of positive space charge distorts the
electric field, drawing the equipotential lines into the hollow cathode
(see figure 3b). The deformation of the electric field lengthens the
path of the electrons from cathode to anode, increasing the electron
multiplication factor. The field in the main gap is also decreased,
thereby reducing the acceleration of the high energy electrons out of
the cathode. A plasma is formed in the main gap.

3. Pendulum effect The term “pendulum effect” was first introduced by
Günterschulze [12] to explain the greatly enhanced current in the HCD
compared to a linear discharge of the same dimensions and voltage
drop. The formation of a plasma in the hollow cathode creates a
potential barrier for electrons (see figure 3c). This potential barrier
accelerates electrons towards the center giving them an energy high
enough to pass through the center of the hollow cathode and pene-
trate the sheath on the other side. There, the electron is again accel-
erated back towards the center of the hollow cathode. In effect the

14



potential barrier swings the electrons back and forth across the hol-
low cathode, hence the name “pendulum effect”. The pendulum effect
greatly increases the distance electrons travel before they collide with
the wall. This confining effect increases the effective ionization rate
as the chance of an ionization collision increases with the increase in
the path of electrons through the vessel. The electron multiplication
factor M increases by orders of magnitude. The resulting increase in
the ionization degree causes the plasma sheath to contract.

4. Plasma expansion As the sheath contracts further, the electron mul-
tiplication factor drops somewhat. Although the sheath has relatively
few electrons, the ionization in the sheath creates high energy elec-
trons, since these are accelerated over part of the sheath potential.
As the sheath contracts the total ionization in the sheath is reduced,
thereby producing less high energy electrons. This reduces the ioniza-
tion due to secondary electrons. However, the electron multiplication
factor remains above the value required to sustain the plasma. The
result is an ever increasing current. Since the hollow cathode keeps
the ionization rate above the value to sustain the discharge, a steady
state is not reached.

5. Pinching The magnetic field induced by the large currents in the
plasma (a few kA) through the small borehole exert a Lorentz force
on the electrons. The Lorentz force has the effect of contracting the
current channel running through the plasma. The effect on the current
density can be illustrated by the effect of two parallel wires with cur-
rent running through them in the same direction. The increase of the
current density due to the contraction from the Lorentz force further
increases the Lorentz force, and so on. This effect is called pinching.
In higher density plasmas the electron pressure finally stops the con-
traction, in low density plasmas the electrons simply miss each other
in the center of the pinch (similar to the implosion of an incandescent
bulb) and the pinch oscillates.

In a pulsed HCD filled with xenon the energy density is high enough to
yield ionization stages as high as Xe12+[4]. The highly ionized xenon
plasma emits EUV light, some (about 3%) of it in a band around 13.5
nm. The sheath inside the hollow cathode becomes much smaller than
the dimensions of the device, creating large electric fields. For example,
a voltage drop of 3kV across a gap of 100 µm yields an electric field of
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3 × 107V/m. It has been suggested that thermionic emission1 at the
surface is responsible for a further rise in current.

6. Decay Eventually the runaway current drains the capacitator bank.
Without an energy source the plasma decays due to recombination
at the walls to which the charged particles diffuse. To a much lesser
extent three particle recombination in the plasma also contributes to
the plasma decay. The decay rate of the plasma also determines the
electron densities at the start of the next cycle.

1When the electrons in the cathode wall have a high enough energy to pass over the
surface potential barrier between the solid material of the cathode wall and the plasma,
electrons are emitted from the surface. This is aided by the Schottky effect; where the
electric field at the surface of the emitter reduces the surface potential barrier, thereby
increasing the number of electrons able to escape from the surface.
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Figure 3.1: Four snapshots from a hybrid fluid-Monte Carlo model by Boeuf
and Pitchford [9] roughly corresponding to phase 1 through 4 of the dis-
charge. The anode potential in the model is 2kV. The gas is helium at a
pressure of 0.5 torr (67 Pa). The lines show equipotential surfaces 200 Volts
apart. The dots represent multiple ionization events. The model assumes an
initial injection of electrons (the trigger). The snapshots shown are: (a) t=6
ns (Townsend phase), (b) t= 744 ns (Plasma formation phase), (c) t=844 ns
(the pendulum effect) and (d) t=1020 ns (plasma expansion in the hollow
cathode and sheath contraction). Pinching, thermionic emission and decay
are not included in the model.
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Chapter 4

Existing Models of Hollow
Cathode Discharges

Because of the transient nature of pulsed HCD’s and the large dynamic
range of parameters, such as the electron density, one cannot hope to use the
same method for an efficient description of all phases of the discharge. For
different phases of the discharge different approximations are appropriate.
An approximation which is valid at one stage of the discharge may well not
be valid for another stage. Not using approximations valid for some stages
for the sake of keeping the model general for all would make the model slow,
inefficient and even incorrect.

A number of different approaches to model HCD’s exist. In the following
we will list the different models which have been applied to various phases of
the discharge. An overview of different approaches and codes for modeling
pinched plasmas and HCD’s is given by Garloff [13].

To study the early phases of the discharge several different approaches
exist. An analytical model has been developed by Kolobov and Tsendin [14].
This model assumes continuous constant energy losses for the fast electrons.
Particle losses and electron scattering are not included in the model. The
energy distribution function (EDF) for the fast electrons is calculated for an
inhomogeneous field. The electric field in the model comes from a sheath
approach. Using this model the pendulum effect and the electron multipli-
cation factor are quantitatively described. Work on calculating the EDF
for both fast and slow electrons has also been done by Arslenbekov et al.
[15, 16].

Particle In Cell- Monte Carlo Collisional (PIC-MCC) methods have also
been used to model the early phases of the discharge, one example being
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the work by Cai and Striffler [17]. Such methods require less restrictive as-
sumptions and can therefore be used to describe more characteristics of the
discharge than what is possible with analytical models. For high electron
densities, however, the computation time makes these models impractical.
Additionally PIC-MCC Models tend to have problems with statistical heat-
ing [18]1. The latter problem can be avoided by not taking the space charge
into account at all. An example of this approach is a Monte Carlo colli-
sional model by Kushner et al [19] which describes the Townsend phase of
the discharge and uses Laplace’s equation to solve for the electric field.

The hollow cathode or pendulum effect (phase 3 in the previous chapter)
cannot be modeled by a local field approximation. In the local field approx-
imation the plasma is described by parameters which are a function of the
local electric field only. In the local field approximation, for instance, the
ionization in one part of the plasma depends only on the reduced electric
field at that location and not on the reduced electric field elsewhere.

This assumption does not hold in the HCD because the pendulum effect
causes the ionization in the center of the plasma to be influenced by the
electric field at the walls (the pendulum effect is essentially non-local). Fur-
thermore, the ionization rate is determined by the tail of the electron energy
distribution. The low densities and large electric fields in the hollow cathode
cause a significant deviation from a Maxwellian energy distribution, which is
most pronounced in the tail. As stated before, in the previous chapter, the
ionization rate does not reach equilibrium. Indeed the absence of an equi-
librium for the ionization and its dependence on the non-local parameters
are of prime importance in the description of the hollow cathode effect. A
(multi-)fluid approach cannot, therefore, describe the hollow cathode effect.
However, a fluid approach can be used to model certain other aspects of
the discharge. The pinching of the plasma is a local effect. Densities in the
pinch phase are high enough to warrant a description in terms of average
properties such as mass, momentum and energy. Pinched plasmas have been
described by MHD (Magneto-Hydro Dynamic) models. In these models the
plasma is described by a set of transport equations coupled to Maxwell’s
equations for the magnetic field. MHD models have mostly been devel-
oped to study fusion plasmas, where the magnetic field is used to confine
the plasma. MHD codes tend to use a Local Thermal Equilibrium (LTE)

1The charge density, given by the projection of the position of all charged particles on
a grid or mesh has random statistical fluctuations. These cause an error in the electrical
field. The energy of the particles is roughly proportional to the square of the electrical
field. Consequently the random fluctuations in the electric field result in an overestimation
of the mean energy of the particles.
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approach[13]. This approach will not work for HCD’s as the electron tem-
perature in these devices is more than an order of magnitude greater than
the temperature of the heavy particles and the process is far from LTE.

The decay phase can also be treated as a fluid. Work on modeling the
decay phase has been done by Broks [20]. Care does need to be taken,
however, with the treatment of the diffusion at low densities. The mean free
path of the electrons is not small compared to the typical dimensions of the
hollow cathode. The model used in [20] uses a correction for Knudsen type
diffusion to estimate the decay time of the hollow cathode.

To best combine different approaches and models a hybrid model is
needed. Such a hybrid model combines fluid or modified fluid approaches
with MCC models. Because of computational and practical limits a PIC-
MCC model cannot be expected to work far beyond the initial Townsend
phase. Hybrid fluid-Monte Carlo models, such as those used by Pitchford
et al [9], have been used to describe the HCD upto the plasma expansion
phase. Broks modified fluid approach with a “Knudsen” correction can be
used for the decay phase. The pinching fase can be described with a fluid
approach together with a module solving Maxwell’s equations for the elec-
tric and magnetic fields to arrive at the Lorentz force on charged particles.
For all phases but the decay phase MCC models are needed to determine
the ionization rate.
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Chapter 5

Hybrid Fluid-Monte Carlo
Models

This chapter explains in a more detailed manner the hybrid fluid-Monte
Carlo models discussed in the previous chapter. Both fluid and particle
kinetic models are based on the Boltzmann transport equation. The Boltz-
mann transport equation, in turn, relies on a continuum approach. The
difference between the two lies in the assumptions made on the distribution
of the particles in phase space. The fluid models rely on a priori assumptions
on the distribution of the particles in velocity space; leaving the distribu-
tion dependent on one or more parameters. Particle kinetic models make
no such assumptions. Instead they seek a solution of the distribution func-
tion by tracking ensembles of particles. Thus, it is not for lack of enough
particles to form a continuum that a particle kinetic model is used in fa-
vor of a fluid model, but because not enough information is available on
the shape of the distribution function. Hybrid models use a fluid approach
to model some macroscopic properties and a particle kinetic approach for
other macroscopic properties. In the hybrid models used in the modeling
of HCD’s, the ionization rate is determined from a particle kinetic model,
while other properties are determined from a fluid model. This is because
the former is particularly sensitive to the shape of the distribution function.

5.1 The Boltzmann Transport Equation

Fluids (in the general sense of the word, meaning both liquids and gasses)
consist of large collections of particles. For example, at the low pressure of
50 Pascal, a cube of 1 mm3 filled with gas at a temperature of 300 Kelvin
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contains approximately 1 × 1013 particles. It is impossible to follow the
temporal behavior of each of these particles. Fortunately, the very fact that
the number of particles is so large allows one to predict the behavior of
the system of particles without detailed knowledge of the behavior of each
individual particle (see for example the discussion in [21]).

To describe the behavior of a collection of particles in terms of the be-
havior of the individual particles, and vice versa, the probability distribution
function is introduced1. The function

fp (~x,~v, t) d3x d3v .

is defined as the number of molecules of a species p at a time t with positions
within the volume element d3x d3v, centered around ~x,~v. The volume ele-
ment in this six dimensional phase space is small, but not infinitesimal. Each
volume element, therefore, contains a large number of particles. This also
means the distribution function should be sufficiently smooth on dimensions
of this scale. Molecules (or atoms) in a different quantum mechanical state
are seen as molecules of a separate species. The subscript p will be omitted
in the rest of this section, but bear in mind that each state is represented
by a separate distribution function.

This function is normalized so that the distribution function integrated
over the entire phase space yields the total number of particles N at the
time t 2:

N(t) =
∫∫

f(~x,~v, t) d3x d3v ,

If the molecules or particles form a gas in a external force field ~F it can be
shown that the distribution function for each species satisfies the continuity
equation [22], p 57:

∂f(~x,~v)
∂t

+∇ψ · (~vf(~x,~v)) =
(

∂f

∂t

)
int

, (5.1)

where the term
(
∂f
∂t

)
int

is due to interactions with other species. It is defined
as: (

∂f

∂t

)
int

δt = f

(
~x + ~vδt, ~v +

~F

m
δt, t + δt

)
− f(~x,~v, t) ,

1 This particle distribution function is completely classical. The statistical nature of
the distribution function comes from the lack of knowledge about the system, not from the
non-commensurability of momentum and position. In a quantum mechanical approach a
distribution function for the density of states is used.

2Note that this assumes a continuum, both in replacing the sum over all volume ele-
ments with an integral and in the definition of the distribution function.
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with δt an infinitesimal time-step. Equation (5.1) is valid per species, where
a species should be seen as the ensemble of particles in the same state. The
notation ∇ψ is used for the gradient in phase space. The term ∇ψ ·(~vf(~x,~v))
can be expanded to

~v · ∇xf(~x,~v) +
~F

m
· ∇vf(~x,~v),

Provided the condition ∇v · ~F = 0 is met, with ∇v the derivative ∂
∂vi

. The
Boltzmann Transport Equation (BTE) in 5.1 serves as a basis to describe
macroscopic properties of the fluid or gas. By integrating over velocity space
one derives equations such as the mass, momentum balance, and energy
balance. The macroscopic properties such as the mass and current density
are retrieved from the probability distribution function by integration over
the velocity space for every species. Ohm’s law results from the integration
of the BTE and subsequent summation over all charged particles.

In order to solve the BTE one needs more information on the interac-
tion term. The interaction term represents collisions with particles of the
same species, particles of different species and radiation events. One sim-
ple approach involves ignoring the term and treating collisions through the
~F/m term. In the Vlasov system the only collisions treated are long range
Coulomb interactions, through a field approach. The charged particles form
an electric field which acts as a volumetric force. The right hand side of the
BTE is zero in this approach.

The electro-magnetic force on a charged moving particle is given by:

~F = q
(

~E + ~v × ~B
)

,

where the electric field ~E and the magnetic field ~B are given by the Maxwell
equations:

∇× ~B = µ0
~j + 1

c2
∂ ~E
∂t ; ∇ · ~B = 0

∇× ~E = ∂ ~B
∂t ; ∇ · ~E = ρ

ε0

(5.2)

with q the charge of the particles, ρ the charge density and ~j the current
density. The latter two are the result of the position of the charged particles
in phase space. A graphical representation of the Vlasov system is shown in
figure 5.1.
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Figure 5.1: Graphical representation of the Vlasov system from [23], p 112.
Collisions are absent in this system, all interactions take place through self
consistent electric and magnetic fields.

5.2 Fluid Models

The method commonly used [22], p97, [23], p 112 to simplify the problem of
solving the Boltzmann Transport Equation (BTE) is to consider quantities
(usually mass, momentum and energy) which are rigorously conserved; that
is, the sum of the loss and production terms over all species must be zero.
By using the conservation theorem:

∂

∂t
〈nχ〉 − n

〈
vi

∂χ

∂xi

〉
− n

m

〈
Fi

∂χ

∂vi

〉
− n

m

〈
∂Fi
∂vi

χ

〉
= S, (5.3)

with χ a conserved property and S the source term. The average of a
quantity A over velocity space is represented by

〈A〉 (~x, t) =
1
n

∫
d3vA(~x,~v, t)f(~x,~v, t),

where
n(~x, t) =

∫
d3vf(~x,~v, t)

is the particle density.
With χ set to the mass, momentum and thermal energy one gets the

familiar conservation equations:

∂ρm
∂t

+∇ · (ρm~u) =
(

∂mn

∂t

)
int

, (5.4)
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ρm

(
∂

∂t
+ ~u · ∇

)
~u + nm~a +∇ ·P =∫

m~v

(
∂f

∂t

)
int

−m~u

(
∂n

∂t

)
int

d3rd3v, (5.5)

3
2

∂kBT

∂t
+

3
2
∇ · (nkBT~u) + (∇~u) : P +∇ · ~q =∫

1
2
mv2

(
∂f

∂t

)
int

− ~u · ~vn

(
∂f

∂t

)
int

d3rd3v, (5.6)

with the derived quantities:

ρm(~x, t) = m
∫

f(~x,~v, t)d3v (mass density) (5.7)
~u(~x, t) = 〈~v〉 (average velocity) (5.8)
T (~x, t) = 1

3m
〈
|v − u|2

〉
(temperature) (5.9)

~q(~x, t) = 1
2mρm

〈
(~v − ~u)|v − u|2

〉
(heat flux vector) (5.10)

P = ρm 〈(~v − ~u)(~v − ~u)〉 (pressure tensor) (5.11)

[20], see also for a complete derivation from the BTE. These equations are
themselves generally too complicated to be of practical use. They need to
be simplified further. In section 6.3 a simplified version of the momentum
equation (5.5) is discussed. More simplifications exists for the equation for
the energy balance. This is not discussed in this report, but more on this
subject is found in [24]. In addition, the set of equations in (5.4) through
(5.6) is not closed. Each moment of the BTE contains a term with the
next moment. Going to higher moments will not solve this problem as the
pattern continues. One requires a simplification of one of the equations so
that it no longer depends on the next moment of the BTE.

Additionally, one must solve the balances for each species. Typically
though, the balances for short lived species can be greatly simplified, as
can the energy balance for species of similar mass. The level of deviation
from thermodynamic equilibrium is crucial to determining how many bal-
ance equations and macroscopic quantities are necessary to characterize a
plasma. For example, a plasma in local thermal equilibrium can be fully
characterized with just the pressure, elemental composition and tempera-
ture, while a plasma in partial local Saha requires two additional parameters-
the electron temperature and the electron density (see also [23], p. 112 for
a more complete discussion).

Note also that the derivation of the conservation equations from the
moments of the BTE does not rely on a Maxwellian distribution function.
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One could replace the temperature in (5.6) with the average energy. In
writing down the equation though, the implicit assumption is made that the
plasma can be described fully in terms of parameters averaged over velocity
space. This requires an a priori assumption on the form of the distribution
function.

5.3 Particle Kinetic Models

Particle kinetic models make far less restrictive assumptions on the nature
the distribution function of the species. Instead they seek a solution to this
distribution function. The Vlasov system described earlier is one example
of such a kinetic model. However, the Vlasov system is collisionless so that
the right hand side of the BTE is zero, greatly simplifying the equation.
In plasmas which cannot be treated as collisionless the problem arises that
phase space is “turbulent”. An ensemble of particles occupying a small
portion of phase space is smeared out over a large part of phase space after
just a few collisions. To solve the problem Monte-Carlo methods are used.
The term Monte Carlo method in physics refers generally to any method
whereby a limited number of processes are selected randomly out of large
number of possible processes. The processes selected are then held to be
representative of all possible processes.

In particle kinetic models samples of the distribution function, called
“super-particles” are taken. Super-particles represent large ensembles of
particles occupying a finite but small volume of phase space. The probability
distribution function of this ensemble of particles is approximated by a delta
function centered around that part of the phase space. The super-particles
are accelerated by the electric field and/or magnetic field. In Particle in Cell
(PIC) models the positions of these particles are mapped on a grid to arrive
at particle densities. These particle densities can then be used to calculate
the electric field by using the Poisson equation.

PIC-MCC (Particle In Cell/Monte Carlo Collisional) models combine the
use of super-particles to represent ensembles of particles with Monte Carlo
methods to represent collisions. Short range interactions are simulated by
randomly selecting one of a range of possible interactions at random times
reflecting the frequency distribution of those interactions. By using large
numbers3 of super-particles the interactions the particles would undergo are
simulated by the interactions of the super-particles. The number of super-
particles typically determines the number of real particles per super-particle.

3typically of the order of 104 to 106
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Long range interactions, such as Coulomb interactions, are calculated by
projecting the positions of the charged particles on a grid. The charge
density is then calculated as the weight of the super-particle (the number
of particles it represents) times the charge of the species smeared out over
one or more cells on the grid. Hence the name Particle In Cell. The electric
field is calculated by solving the Poisson equation. A similar approach is
used to calculate the magnetic field. PIC models are known to have several
drawbacks. In order to solve the Poisson equation accurately a dense grid
is needed. Getting an accurate estimation of the charge density on that
grid requires a large number of super-particles per cell. PIC models are,
therefore, computationally expensive.

Other methods exist, which also combine the use of super-particles to
represent ensembles of particles and Monte Carlo methods to represent col-
lisions or other short range interactions but do not make use of grids. These
have advantages for open systems and systems where the space charge dis-
tribution has extreme gradients, or is distributed in a highly non-uniform
manner but tend to be computationally expensive and difficult to imple-
ment. For the purpose of studying confined plasmas PIC-MCC methods are
far more common than grid-less methods. In the hybrid model discussed
next grids are also used, though the potential is not calculated from the
charge distribution of the super-particles.

5.4 Hybrid Models

In some cases a mix between fluid and particle kinetic models is used. The
pendulum effect in the hollow cathode cannot be described by a pure fluid
model, but some aspects of the discharge can. In a hybrid model some
aspects of the problem are described by a particle kinetic model while other
aspects are described in terms of average quantities, in a fluid model. The
models used by Pitchford and Baguaer describe the fast secondary electrons
with a particle kinetic model, whereas the heavy particles and the bulk of
the electrons are described with a fluid model. The ionization, which is
extremely sensitive to the tail of the energy distribution function for most
plasmas, is described by a particle kinetic model of those electrons with an
energy above the ionization threshold. The particle kinetic model of these
high energy electrons yields an ionization rate which is used in the fluid
model for the heavy particles. The fluid model provides a ”background gas”
for the high energy electrons to collide with. The fluid model also provides
the electric field. The net charge density is computed by the sum of the
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product of the density and charge for all particles in the fluid model. The
potential then follows by solving Poisson’s equation. This approach is valid
as long as the number of electrons in the particle kinetic model is small
compared to the charge density in the fluid model. If this is not the case a
PIC-like technique is required to account for the charge of the particles in
the particle kinetic model. The schematics of the interaction between the
fluid and particle kinetic models in the hybrid model is given in figure 5.2.

Figure 5.2: A schematic overview of a hybrid model stressing the fact that
the particle sub-model is grid-less, while the fluid model is discretized on a
grid.
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Chapter 6

Extensions to plasimo

We wish to construct a hybrid fluid-Monte Carlo code to model as many
phases of the discharge as possible. It is generally more efficient to make use
of available and pre-existing code rather than write a separate dedicated
application to model a problem. In the EPG group two modeling plat-
forms are being developed: plasimo and MD2D. The Micro Discharge 2D
(MD2D) code was written by Gerjan Hagelaar to model micro discharges
for display technology. The code is now being further developed by the
plasimo team, most notably by Jan van Dijk and Wouter Brok. MD2D
is a time dependent model and uses a finite volume method on orthogonal
grids. Though it is limited to 2D applications it has considerable flexibility
in the geometry. The code solves transport equations for charged particles
separately using the drift-diffusion equation and the continuity equation.
Since the drift-diffusion equations for the electrons is solved as well, one
is not confined by the assumption of quasi-neutrality. The code assumes a
dominant background gas whose temperature is known. The temperature of
all other species besides electrons are assumed to equal to the temperature
of the background gas. The presence of a background gas whose composition
and temperature is not effected by the other particles poses a problem for
the modeling of hollow cathodes for EUV generation. It is for this reason
that the author chose to adapt another platform in use at the EPG group:
plasimo . This choice is made in spite of the advantages the Micro-dis code
has in other areas, such as the absence of the assumption of quasi-neutrality
and the capability of handling more complex geometries.
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6.1 plasimo

Plasimo (plasma simulation model) is a modeling toolkit for the simulation
of low temperature plasmas1. The code was originally designed by Benoy
[24] to model inductively coupled argon plasmas. Researchers working under
the supervision of Van der Mullen contributed, and continue to contribute,
to the code as they work on specific applications. The code underwent a
major redesign in 1998, using object oriented programming techniques to
make the code more orthogonal2 and robust to extensions [25], p 14,15.

Plasimo is modular in design. The sub-models for solving transport
problems are based on finite volume methods on orthogonal or ortho-curvilinear
grids. Problems are limited to two dimensions, where the third coordinate
can be either Cartesian or azimuthal. See [26], chapter 16 for more infor-
mation on the numerical grids used in plasimo .

Plasimo assumes a Maxwellian distribution function, with the addi-
tional feature of describing the deviation from this Maxwellian distribu-
tion with different temperatures in the tail. The code also assumes quasi-
neutrality. The electron density is calculated from the sum of the ion den-
sities. More information on the features and limitations, are found in [25]3.
Using plasimo as the basis for a hybrid fluid-Monte Carlo code has the
advantage of reusing tried and tested code developed for a large variety of
electrically operated plasma light sources. A major advantage over MD2D
is that it solves energy balance equations for all species without assuming a
single dominant background species of fixed temperature. It has some dis-
advantages over MD2D in terms of geometry and the assumption of quasi
neutrality. Additionally, the code has not been designed to use with Monte
Carlo methods. However, the modular structure of the code is such that it
facilitates the addition of extensions.

Constructing a hybrid model with the use of plasimo implies that the
following additions to the code are required:

1. A diffusion model that solves the transport equation for the electrons
rather than inferring the electron density from the ion densities,

2. A module to solve the Poisson equation given the net space charge,

3. A kinetic Monte Carlo model to provide the ionization rates,

1as opposed to fusion plasmas
2in the sense that components can be used independently of each other
3The code has continued to develop since this publication. The plasimo website

http://plasimo.phys.tue.nl contains more current information.
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4. A module simulating secondary electron emission from the ion flux to
the walls as input from the fluid part of the model (which treats the
ions) to the kinetic part of the hybrid model,

5. Methods to project the grid-less positions of the particles in the kinetic
module on the grid in the fluid sub-model,

6. An expansion to the fluid model to allow for more complicated geome-
tries. plasimo requires rectangular regions in coordinate space. More
complicated geometries are handled by using ortho-curvilinear coor-
dinates to map these problems onto a rectangular, orthogonal grid.
Ortho-curvilinear grids, however, cannot be used together with a grid-
less method as there is no general analytical mapping of all of the
Cartesian space on the two dimensional ortho curvilinear grid. Pro-
jecting a point in 3D Cartesian space on the curvilinear grid requires
that one solve a partial differential equation [26]. Thus, using ortho-
curvilinear grids for the fluid part of a hybrid model would be pro-
hibitively computationally expensive. Therefore, hybrid models with
more complicated geometries require a different approach.

The main focus on the remainder of this chapter will be a self consistent
approach to the transport and diffusion of charged particles in a plasma
without the assumption of quasi-neutrality and the extension of the fluid
model towards anisotropic diffusion. The method used to solve the Poisson
equation is discussed in the next chapter. The problem of projecting points
from the grid-less model on the cells of the grid is dealt with in appendix
A on coding issues. Appendix B contains a proposal on how to deal with
more complicated geometries.

6.2 Removing Quasi-neutrality

The central region of a discharge is usually assumed to be quasi-neutral.
That is, the density of the electrons is determined by the sum of the density
of all the ions multiplied with their charges

ne =
∑
i

niZi,

with ne the density of the electrons, and ni the density of the positive ion
with charge number Zi. The assumption of quasi-neutrality comes from
the shielding effect of the plasma. A small difference between the density
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of the ions and electrons yields large electric fields, which can compensate
externally applied electric fields. Deviations from quasi-neutrality are then
assumed to occur only in a small region near the boundaries called the
sheath. Large deviations from quasi-neutrality also occur on a scale smaller
than the Debye length [23], p11. The quasi-neutral approach is valid when
the ratio of the applied electric field to the electron density is small.

In a thought experiment in [23] an area of positive space charge of 1mm
thickness with no electrons, in an otherwise uniform one dimensional plasma
creates an electric field of 105 V/m at an ion density of 1016 m−3 (in the
neutral region, see also figure 6.1) and an electric field of 109 V/m at an ion
density of 1020 m−3. It is clear that electric fields of such magnitude will
quickly accelerate charged particles to reduce the space charge.
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Figure 6.1: Schematic drawing of the one dimensional positive space charge
region in the plasma mentioned in the thought experiment from [23]

If the applied electric field is large the space charge region created by the
plasma to shield itself from the externally applied field can be significant,
particularly at low electron densities. This effect needs to be taken into
account in the initial phases of the discharge as the hollow cathode has
several kilovolts of potential difference across a gap of a few millimeters.
For a given constant field the thickness of the space charge region must
decrease for increasing ion densities.

Although quasi-neutrality is a common assumption in literature for higher

34



density plasmas, and has been built into plasimo from the start, it is not
valid for low pressure cathode discharges. In the literature for HCD’s quasi-
neutrality is usually not assumed [9, 10].

Another reason to remove the assumption of quasi-neutrality from plasimo
is the need for an accurate estimation of the local electric field. In a hybrid
model the kinetic sub-model needs the local electric field as input. In the
conditions in the startup fase of the HCD the sheath approach is not valid as
the sheath is still in the process of formation. This means that one cannot
estimate the local electric field from the ambipolar field and an externally
applied electric field. The electron density is low (of the order of 1014 m−3)
and the applied electric field is of the order of several kV/cm.

The densities of the ions and electrons have to be calculated in conjuction
with the electric field rather than assuming quasi-neutrality to calculate the
electron density given the ion density. The electric field follows from the
solution of the Poisson equation. This electric field, in turn, causes a net
drift of charged species in the plasma.

Once a space charge region has been formed another approach is possible,
where one keeps track of the position of the sheath edge and assumes quasi-
neutrality within the central region of the discharge. An example of this
approach is found in [27].

The simplest and most straightforward approach to solve for the space
charge distribution is to use the drift-diffusion equation for each charged
particle given the electric field and the proper diffusion and mobility coef-
ficients. An example of this approach is to be found in [10], although one
should take into account that the discharges studied are at much lower volt-
ages (300V) and slightly higher pressure (0.65 torr). The validity of this
approach, for the regime in which the hollow cathode for EUV production is
operated, is examined next, starting with the derivation of the drift-diffusion
equation.

6.3 The Drift-Diffusion Equation

The system of equations in (5.4), (5.5) and (5.6) is still equivalent to the
BTE (5.1). However the difficulty in solving the equations has simply been
moved to the determination of the derived quantities in (5.7) through (5.11).
In the fluid approach one assumes that the system can be fully described in
terms of properties averaged over velocity space. This requires an a priori
assumption on the form of the distribution function. The prime example
would be a Maxwellian distribution, but Druyvestein or two-temperature
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distributions can also be used as long as one has a function dependent on
quantities averaged over the velocity space. For many practical purposes the
equations in (5.4) through (5.6) are still too complex to handle. To calculate
the drift of particles due to density gradients and (externally applied) electric
fields the drift-diffusion equation is often used. This is a simplified form of
(5.5).

Let us examine the speed ~up of a species p in the situation where the
weighted sum of the velocity of all species (the bulk flow)

∑
p ρpup/

∑
ρp is

zero4. Using conservation of momentum one may write:

∂ρp~up
∂t

+∇ · (ρp~up~up) = −∇ ·Pp + ~upSp + ~Fp +
∑
j

~Fpj , (6.1)

with Pp the pressure tensor, ~Fp the force per unit volume on species p and∑
j

~Fpj the forces on species p as a result from the interaction with all other
species [28]. The momentum balance can be written in a more familiar form
by subtracting the mass balance (5.4 multiplied with the velocity from it.

ρp
∂~up
∂t︸ ︷︷ ︸
1

+ ρp (~up · ∇) ~up︸ ︷︷ ︸
2

= −∇ ·Pp︸ ︷︷ ︸
3

+ ~Fp︸︷︷︸
4

+
∑
j

~Fpj︸ ︷︷ ︸
5

, (6.2)

where the first term and second term (6.1) have been expanded with the
product rule. In particular we make use of the relation

∇ · (ρp~up~up) = ~up∇ · (ρp~u) + ρp (~up · ∇) ~u.

We will now examine each term in the equation to arrive at the simplified
form of the momentum balance known as the drift-diffusion equation.

term 1 The drift-diffusion equation is quasi-static. The time dependent
term is ignored. This is valid provided the time scales of interest
are much longer than the relaxation times of the momentum exchange
interactions. The validity of this approximation for the hollow cathode
will be reexamined in chapter 9.

term 2 The term ρp (~up · ∇) ~up is assumed to be small compared to ∇p and
is also neglected. The ratio ∇p can be approximated as ρu2

therm/L,

4 For the case in which the bulkflow is not zero, ~up should be replaced by the relative
velocity to the bulkflow. The derivation then follows along the same lines. See [28], section
7.2.
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with utherm the random thermal velocity and L the typical dimension
of the plasma. Neglecting the term ρm (~u · ∇) ~u is, therefore, valid as
long as utherm is much greater than the systematic velocity.

term 3 Without loss of generality, the pressure tensor Pp can be split into
a scalar pressure times the identity matrix and a viscosity tensor Πi

(Pp = ppI−Πp). In the absence of significant temperature gradients
the term ∇ · P simplifies to kTp∇np. The viscosity tensor term is
neglected as well. This is valid for sufficiently dilute plasmas.

term 4 The only volumetric force considered is that on charged particles
due to the electric field, gravity and the Lorentz force are neglected.

term 5 The absence of temperature gradients also allows one to ignore the
thermophoretic part of the last term in 6.1. The sole contribution to
the force between particles then comes from the friction force:

~Fpj = mpjnpnjΩpj(~uj − ~up),

where Ωpj is the rate coefficient for momentum transfer between the
species and mpj is the reduced mass of the system.

Under the previous assumptions the momentum equation reduces to :

kTp∇np = npqp ~E +
∑
j

mpjnpnjΩpj(~uj − ~up). (6.3)

Solving for the velocity ~up yields:

~up =
npqp

feffp

~E +
kTp

feffp

∇np +

∑
j mpjnpnjΩpj~uj

feffp

, (6.4)

with feffp =
∑

j mpjnpnjΩpj , the effective friction force for the species p. In
the case where there is one dominant species with a density much greater
than that of other species the last term can be ignored. The result is the
familiar drift-diffusion equation

~up = µp ~E + Dp∇np/np, (6.5)

with
µp =

npqp

feffp
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the mobility and

Dp =
npkTp

feffp

the diffusion coefficient. The Einstein relation (µ = qD/(kBT )) automati-
cally follows from (6.5), without any further simplifications.

In deriving the drift-diffusion equation some restrictive assumptions have
been made. A more general and self-consistent approach for diffusion is
followed in [28], but at the low densities in the hollow cathode it is not so
much the stated assumptions in the previous derivation that are cause for
concern as the underlying fluid approach. Runaway electrons can give rise
to an electron beam that has little in common with the concept of a drift
velocity or indeed a fluid.

6.3.1 Small Anisotropy

The drift-diffusion equation can be derived more generally without assum-
ing a Maxwellian distribution by the classical two term expansion of the
BTE combined with the local mean energy approximation and the small
anisotropy condition. The expansion will not be reproduced here as there
are many examples of such an approach to be found in literature, see for ex-
ample the derivation in [29]. The local mean energy approximation assumes
that the plasma can be described in terms of different electron parameters
as a function of the mean electron energy by solving the two term expan-
sion of the space independent BTE. The small anisotropy condition is the
requirement that the mean free path of the particles are small compared to
the size of the vessel, that the energy gained between collisions is small and
that the rate at which the plasma parameters change is slow compared to
the collision frequency. In addition to the afore mentioned, the two term
expansion usually only takes into account collisions of the charged species
with a singal neutral species. Coulomb collisions between different species
are treated through the ~F/m term, not in the interaction term of the BTE.
This condition is equivalent to the condition of the presence of a single
dominant species in the derivation of the drift-diffusion equation from the
conservation of momentum by a fluid approach. The result of this derivation
is an expression for the mobility and the diffusion coefficient in terms of the
isotropic component of the space dependent distribution function F (~x, u).

D =
1
3

1
g(~x)N

√
2e

m

∫ ∞

0

u

σ(u)
F (~x, u)du (6.6)
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µ = −1
3

1
g(~x)N

√
2e

m

∫ ∞

0

u

σ(u)
∂F (~x, u)

∂u
du (6.7)

g(~x) =
∫ ∞

0
F (~x, u)

√
(u)du. (6.8)

(6.9)

The equations 6.6 and 6.7 form the basis for methods [9, 10] which use
the drift-diffusion equation in conjunction with tables of the mobility and
the diffusion coefficients as a function of the reduced electric field strength
(E/n). In this approach a steady state solution for the EDF is sought for a
uniform electric field in a given density of the neutral particles. Using equa-
tions (6.6) (and 6.7) the corresponding mobility and diffusion coefficients
are found. See also the discussion in [30], section 6.1.

However, in the case of HCD’s the mean free path of the electrons is
of the same order of magnitude as the size of the vessel and the pendulum
effect is essentially non-local. The small anisotropy condition is not met,
nor is the local mean energy approximation valid. The problems this poses
for the fluid part of a hybrid model are discussed later.

An attempt has been made to produce mobility and diffusion coefficients
from a Monte Carlo drift experiment. This is discussed in chapter 9. To
incorporate the results two simple plugins have been added to plasimo .
One to accept a lookup table for the mobility as a function of the reduced
electric field strength, and another using the Einstein relation to calculate
the diffusion coefficients from the mobility.

After the initial phases the degree of ionization increases and the as-
sumption of the presence of a single dominant species or background gas is
no longer valid. The plasma will then have to be described by a different
diffusion model.

6.3.2 Anisotropic Diffusion

Until recently the models used in plasimo assumed isotropic diffusion. This
is a valid assumption for unmagnetized plasmas with low Townsend num-
bers. The degree of magnetization is determined by the Hall parameter, the
ratio between the Hall component of the resistivity tensor and the resistiv-
ity in the absence of the magnetic field. A plasma is magnetized if the Hall
parameter for the electrons is greater than one, in which case the electrons
gyrate around the magnetic field lines. The result is that the diffusion of
electrons becomes anisotropic. At even greater magnetic field strengths ion
diffusion can also become anisotropic [23], p 55. However, apart from the
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pinch fase of the discharge the magnetic fields do not play a significant role
in the HCD5.

Anisotropic diffusion is not exclusively the result of high magnetic field
strengths. Electric fields can also lead to anisotropic diffusion. More specif-
ically, we have to consider the ratio of the electric field strength to the
density of the neutral particles. This ratio, E/n, is known as the Townsend
number of the discharge. The common unit for this ratio is the Townsend,
abbreviated with Td. 1 Td is equal to 10−21Vm2.

Discharges with high Townsend numbers show anisotropic diffusion. For
HCD’s in the startup fase electric fields are of the order of 105V/m and the
xenon pressure is low (approx. 20 Pa). These high electric fields, together
with the low density, (some 7×1020m−3 assuming a temperature of 2000 K)
give rise to large drift speeds. Depending on the isotropy of the scattering
from elastic and other collisions the EDF may become anisotropic. That is,
the root mean square (rms) velocity in the direction of the electric field will
differ significantly from the rms velocity in other directions if anisotropic
scattering occurs. The study of the transport properties of xenon [31] show
that the diffusion of electrons in xenon is anisotropic at reduced electric
fields strengths above 1 Td. With a pressure of 20 Pa and a temperature of
2000 K electric fields of the order of 105V/m yield 105 Td.

Anisotropic temperature

The use of a temperature Tp in (6.5) assumes an EDF in which the anisotropy
in the velocity space is small. One possible remedy that allows one to still
use a generalized form of (6.5) for larger anisotropies is to introduce an
anisotropic temperature. Examples of this approach are found in the work
of Ellis, Vliehland, Mason and others [32] who use a semi-empirical approach
to calculate the transport properties of ions in gasses. This work introduces
a anisotropic temperature with a semi-empirical relation between the tem-
perature in the direction along the field lines and the temperature perpen-
dicular to the field lines to arrive at an approximation for the anisotropic
diffusion coefficients through a generalized form of the Einstein relation.
This approach is impractical in its reliance on large numbers of experimen-
tally defined quantities. A very rough approximation is obtained by simply
using

kT‖ = kT +
1
4
Mv2

d, (6.10)

5 Even in the pinch fase a two dimensional approach can ignore anisotropic effects as
the magnetic field is mostly tangential.

40



with T‖ the temperature parallel to the electric field lines, vd the drift speed
of the species in question with mass M . The temperature perpendicular to
the field lines is assumed unaffected by the electric field. This “temperature”
is then substituted into the Einstein relation. From (6.10) it also becomes
clear when one can expect large deviations from anisotropic diffusion due
to the electric field. Deviations are to be expected when the term 1

4Mv2
d is

no longer small compared to kT . The drift experiments in chapter 9 and in
particular the figure 9.4 show the relative importance of the latter term for
a case studied.

6.4 Secondary Electron Emission

Secondary emission of electrons from ion impact on the surfaces of the ves-
sel forms an important source of fast electrons, and therefore an important
source term for the kinetic model. To model this process the flux of ions to-
ward the surfaces is calculated from the temperature and density of the ions
in the fluid model. This flux is multiplied with a constant factor represent-
ing the chance that electrons are released to calculate the total electron flux
into the vessel (the secondary electron emission coefficient). Super-particles
representing this electron flux are then injected into the vessel from the
boundary with random velocities sampled from the tail of the Maxwell dis-
tribution function matching the local electron temperature at the wall.

In plasimo the ion flux Γ toward the wall is usually calculated with:

Γ =
1
4
nvB, (6.11)

where n is the ion density and vB is the Bohm velocity
(√

8kTe
πm

)
[26]. The

factor 1
4 comes from the assumption of an isotropic velocity. As has been

noted in [20], p. 83 the velocity distribution of ions near the wall in an
environment where collisions are rare is not isotropic. The speed of ions
coming back from the wall is smaller than those going towards the wall, if
indeed any come back at all. This yields an extra factor of two in (6.11)
yielding a flux:

Γ =
1
2
nvB.

The primary difficulty, however lies in the estimation of the secondary
electron emission coefficient. This coefficient depends on many factors, such
as the work function of the material of which the surface is composed, the
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surface roughness, impurities on the surface and the local electric field. Many
of these factors are difficult to determine and may vary as the surface proper-
ties change with use. In order to test the working of the model for secondary
electron emission a factor 0.3 is used.

6.5 Ionization Rates

The primary (though not the only) purpose of the kinetic sub-model is to
calculate the ionization rates for use in the fluid sub-model. There exist
two approaches to this end. The most straightforward method is to simply
count the number of ionization collisions in the kinetic model and keep
track of where they occur. The ionization rate is then simply the number
of ionization collisions per volume cell divided by that cell’s volume and the
time step over which the data is collected. Another method is to determine
the energy distribution and then to calculate the convolution of the cross
section with the energy distribution function. The author has opted to
implement the straightforward method of counting the ionization events
per grid cell for reasons of simplicity. This approach has some drawbacks:
the primary problem is the requirement that a large number of ionization
collisions 6 per grid cell and per timestep are necessary to limit statistical
fluctuations. This can be remedied by spreading the ionization collisions
out over multiple grid cells or time steps. The most transparent and flexible
approach would be to implement filters. Such filters have not yet been
implemented, but some suggestions are presented in the conclusions at the
end of this report.

6Note that the other method requires a large number of super-particles per grid cell to
determine the local EDF
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Chapter 7

Solving the Poisson Equation

As stated in the previous chapter, in section 6.1 a method of solving the
Poisson equation is needed to yield the potential, and thereby the electric
field, given the space charge distribution. This electric field is required as
input to the drift diffusion equation, the energy balance (Ohmic dissipation)
and the particle kinetic model. This chapter discusses the implementation
and testing of the Poisson solver.

With the Coulomb gauge the potential Φ on a domain ~x ∈ R in free
space is given by the Poisson equation :

∆Φ = −ρ(~x)
ε0

, (7.1)

with ε0 the permittivity of free space, ρ(~x) the charge density and ∆ the
Laplacian. The electric field follows from

~E = −∇Φ− ∂ ~A

∂t
,

where ~A is the magnetic vector potential. The approximation ~E = −∇Φ
has been used to calculate the electric fields. This approximation is valid if
the speed of light in the plasma is much greater than the velocity with which
the electric field changes1. Other EM modules in plasimo are capable of
calculating the magnetic field from the vector potential. These are used to
model radio frequency driven plasmas. For more information see the work
of Van Dijk [34].

1The potential can change instantaneously in the Coulomb gauge, changes in the elec-
tric field cannot propagate faster than the speed of light. If propagation of changes in

the potential become of the same order or faster than the speed of light the term ∂ ~A
∂t

is
needed.
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In order to reuse as much code as possible the Poisson equation is rewrit-
ten in the form used for conserved quantities, the so-called Φ-equation (not
to be confused with 7.1 for the potential). In steady-state form the Φ equa-
tion is given by:

∇ · (ρφ~vφ)︸ ︷︷ ︸
convection

= ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source

.

plasimo already has methods to solve equations of this form with a finite
volume method. More information on the discretization scheme is given in
[24], section 7.2. Using existing code that has already been optimized and
debugged is far preferable to writing new code as it not only saves a lot
of work but also avoids increasing overall complexity and introducing new
errors.

The Poisson equation can be written as:

0 = ∇ · (ε0∇Φ) + ρ(~x) .

The charge density ρ(~x) acts as a source term and the permittivity as a
diffusion coefficient2. There is no convection term.

7.1 Testing the Poisson Solver

Even though code reuse limits the need for debugging, some tests are still
needed to determine the accuracy and convergence of the approach being
used. To test the method used for solving the Poisson equation a fixed charge
density is imposed and the resulting potential is calculated (and from it the
corresponding electric field). This numerically calculated electric field is
then compared to the analytical solution for the electric field derived from
the use of Gauß’ theorem for different grid densities. From this one gains
information on the convergence to the analytical solution for increasing grid
density.

A number of charge distributions on an infinitely long cylinder have been
tested. The potential at Rmax is fixed at zero. The homogeneous Neumann
condition (~n · ∇Φ = 0) is used at the other boundaries see also figure 7.1.
The electric field is calculated as the gradient of the potential through a
three point finite difference approximation in the center, and a two point

2Note that if one replaces ε0 with εr (the relative permittivity) the φ form of the
equation would be correct for a dielectric. This is not used at present, but may turn out
to be a useful feature in the future.
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Figure 7.1: The grid on which the Poisson equation is solved.

approximation at the edges. In the analytical approach Gauß’ theorem is
used to arrive at the electric field directly.

Using Gauß’ theorem it is easily shown that the electric field in the radial
direction Er is given by:

Er =
1

ε0 r

∫ r

0
rρ(r) dr . (7.2)

Two test cases with different charge distributions have been constructed to
compare with the results from plasimo .

1. Constant charge density; this case is the simplest. A constant charge
density ρ is imposed on a volume with a radius Rmax. Outside this
volume the charge density is zero. The electric field in the radial
direction is given by

Er =
ρ

2ε0
r. (7.3)

2. “Sheath” type charge density; in this case the space charge is concen-
trated along the outer ring of the cylinder. The charge is given by:

ρ(r) =

{
ρmax (1− x)

(
x−

√
2

2

)2 √
2

2 ≤ x ≤ 1
0 elsewhere.

(
x =

r

Rmax

)
(7.4)
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A graph of this space charge distribution is given in figure 7.2. Sub-
stitution of (7.4) into (7.2) and performing the integration yields

Er(r) =

{
ρmaxRmax

ε0
f(x)

√
2

2 ≤ x ≤ 1
0 x ≤

√
2

2

,with (7.5)

f(x) =

[
−1

5
x4 +

1
4

(
1 +

√
2
)

x3 − 1
3

(
1
2

+
√

2
)

x2 +
1
4
x +

(√
2

240
− 1
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)
1
x

]
.
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7.1.1 Test Results

A proper implementation of the Poisson solver requires that the difference
between the numerical and the analytical solution convergences to zero as the
gridspacing goes to zero. To examine the convergence behavior increasingly
dense grids are tested. We compare solutions with the known analytical
result for three equidistant grids with Rmax = 0.01m doubling the number
of gridpoints in each direction each time. The z coordinate range is z ∈
[−0.01m, 0.01m] and ρmax is equal to 0.001 Cm−3. The grids had 20 × 20,
40 × 40 and 80 × 80 grid points respectively.

1. Constant charge density; for the case of constant charge density the
results from Plasimo match very well on the interior points, but less
so near the boundaries. The error is nearly 2% at the boundary for
the sparsest grid (20 × 20). This is because the gradient is determined
by a first order method near the boundary (by a two point method)
whereas it is determined by a second order (three point) method for
interior points. The discretization error is most evident for the grid
with 20 × 20 points, as shown in figure 7.4. To test for convergence the
differences between the results and equation (7.3) have been compared
on different grids. The result is plotted in figure 7.4. From the graph of
the residues it becomes clear that the convergence near the boundaries
is linear; decreasing the gridspacing by a factor two reduces the error
by the same factor. The error in the interior boundaries does not
show clear convergence for decreasing grid spacing as the error remains
constant. The error itself, though, is low (smaller than 10−6). The lack
of further convergence is most likely due to cancellation effects.

2. “Sheath” type charge density

The case with the “sheath” type charge density requires more grid
points for an accurate result. With 20 × 20 points the residue is more
than 6% for r = Rmax. In the region where the charge density has
its peak the discretization error is also clearly present (see figures 7.5
and 7.6). The convergence seems to be better than in the case with
a constant charge density. The absolute value of the error is larger,
though. In figure 7.6, only the error between 0.0075 and 0.001 m has
been plotted. Outside this region the analytical field is zero and the
relative error is of the order of 10−16.
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Chapter 8

The Particle Kinetic
Sub-Model

As stated previously, plasimo needs to be expanded with a particle kinetic
model. Rather than implementing a new Monte Carlo collisional model from
scratch, the choice has been made to use a Monte Carlo code being developed
in the Group Elementary Processes in Gas Discharges at the Eindhoven
University of Technology for use with MD2D [33]. Using this code does,
however, require that one implement methods to make data from plasimo
available in a form that the Monte Carlo code understands (and vice versa).
This is done by a construct known as a bridge class. Such a bridge class
has been built. In principle all data from the fluid model is available to
the Monte Carlo code. In practice the data actually used is limited to the
electric field, the density of different species, the “temperature” of those
species and the ion flux to the walls. In the other direction reactions rates
such as the ionization rate are available for use in the fluid model. The
resulting flowchart is shown in figure 8.1. Implementation details on the
bridge class and related data structures are discussed in appendix A.

To test the working of the Monte Carlo code in isolation a simple test
problem is required. Two test cases have been studied. One test case is a
numerical drift experiment that compares the drift of electrons in a back-
ground of xenon with values from literature. This test case is discussed in
the next chapter. The other test case simulates the diffusion of hydrogen in
a background gas of xenon and is dealt with in the next section.
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8.1 Diffusion

To test the handling of the collisions by the Monte Carlo code a numerical
experiment has been devised consisting of a cylindrical vessel filled with
xenon. In this vessel atomic hydrogen is released, instantaneously filling the
entire vessel with a low density of hydrogen. The atomic hydrogen diffuses to
the walls where it is absorbed. The resulting density as a function of time
is compared with results from a “Knudsen” model for the diffusion. For
the collisional cross section between the hydrogen and the xenon atoms a
hard sphere model is used. The results from the kinetic Monte Carlo model
are compared with a “Knudsen” diffusion model developed for plasimo
by Broks in [20], chapter 7. This diffusion model uses a resistor model to
account both for Knudsen like flows and standard Fick diffusion. The model
was developed for regimes in which the mean free path is of the same order
of magnitude as the size of the vessel so that the influence of the vessel size
require only a minor correction to standard Fick diffusion. If the mean free
path between collisions is much larger than the size of the vessel such a
modified fluid approach is no longer possible.

The effective diffusion coefficient Df is then given by:

Df =
DsDk

Ds + Dk
,

with Ds the standard Fick diffusion coefficient and Dk the “Knudsen” dif-
fusion coefficient. The latter is given by

Dk =
4
3
K0vth,

with vth the thermal velocity and K0 the so called Knudsen factor. The
Knudsen factor is, in turn, approximated by

K0 = fKnΛ,

with fKn the Knudsen geometry factor and Λ the gradient length. See [20]
for more information. The initial conditions used for both the kinetic model
and the Knudsen model are shown in table 8.1. The results are presented
in figure 8.2.

8.2 Results

As can be seen in figure 8.2 the decay of the hydrogen density in the Monte
Carlo method diverges from that in the modified Knudsen corrected fluid
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Gas Temperature 1000 K
Xenon Density 7.24 ×1020 m−3

Atomic Hydrogen Density 1 ×1018 m−3

Collisional cross section H-Xe elastic collision 5.56 ×10−20 m2

Knudsen geometry factor 0.1875
Knudsen gradient length 0.008 m
Number of super-particles 80000
Vessel Dimensions:

radius 0.016 m
height 0.016 m

Table 8.1: Initial conditions and inputs for the Hydrogen Diffusion experi-
ment, for both the kinetic and the Knudsen fluid approach.

model. The modified fluid model assumes that the temperature of all the
heavy particles is the same and that the energy distribution function of the
hydrogen atoms remains Maxwellian. This is, however, not the case, as can
be seen in figure 8.3. The fast particles reach the walls first, effectively
cooling the hydrogen atoms down. The elastic collisions with the xenon
atoms are insufficiently frequent to keep the temperature at the original 1000
Kelvin. In addition, the experiment starts showing statistical fluctuations
due the depletion of super-particles from the experiment. The initial slope
of the number of particles does match. This indicates that the ”Knudsen”
diffusion model can be used in a quasi steady state approach together with
an additional energy balance for the hydrogen atoms. Such an approach
would update the diffusion coefficients every time step (with each time step
smaller than 10 microseconds).

The experiment has also been repeated with a xenon partial pressure of
200 Pascal, or a density of 1.45×1022m−3 to decrease the initial mean free
path for collisions between hydrogen and xenon from 0.025m to 0.00124m.
Bringing the mean free path down to an order of magnitude smaller than
the size of the vessel takes the problem to the regime for which the Knudsen
part of resistor model amounts to a small correction of the Fick model. As
is clear from 8.2 the Monte Carlo results are a much better match to those
of the fluid model in this regime.
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Figure 8.1: Flowchart of the hybrid model.
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Chapter 9

Transport Properties of
Xenon at High Townsend
Numbers

Fluid models require transport properties for the species in the model as
input. In particular any fluid model which uses the drift diffusion equation
requires as input either the mobility and diffusion coefficients, or a method
of calculating them. This can be by calculating the convolution of the cross
sections, whose values can be obtained from literature with the EDF, or by
using simplifications such as the Langevin limit to arrive at an analytical
expression for the collision integrals, and thereby the diffusion coefficients.
In plasimo several different approaches are possible to arrive at the mobility
and diffusion coefficients. More on these the different approaches is found
in the work of Johnston [35] in chapters 7, 8 and 9. To the pre-existing
possibilities a method using a simple lookup table has been added. This
method requires a file containing the mobility for different ratios of E/n. The
diffusion coefficient is then calculated using a (generalized)Einstein relation.

In deriving the drift diffusion equation assumptions are made that are
questionable under the conditions present in a pulsed HCD. In particular we
wish to examine what happens at high values for the reduced electric field
strength (E/n). Simply assuming a modified version of a Maxwellian EDF
and then integrating the cross sections for various collisions over this as-
sumed EDF is unlikely to yield accurate transport properties. In effect, this
is another example of a modified fluid approach where a deviation from a
Maxwellian EDF is corrected for. To get a more accurate approach and
to test the assumptions explained earlier in 13 we conduct a numerical

57



experiment.

9.1 Mobility and Diffusion Coefficients from a Nu-
merical Drift Experiment

Transport properties for a low temperature plasma can be calculated by
solving the Boltzmann equation and integrating the resulting EDF over the
appropriate cross sections for the dominant collisions. Cross sections for
elastic and inelastic collisions as well as ionization reactions are available
from literature, though values may be inaccurate near the threshold energy.
We test this approach with the aim of providing a lookup table for the
mobility coefficients. The BTE is calculated with a Monte Carlo method,
using a program developed for the Micro-dis project [33], cross sections from
McEachran and Stauffer (as published by [36]) for the elastic collisions, cross
sections for xenon excitation by electron impact from [38], and ionization
cross sections from [39]. This numerical experiment uses mostly the same
code as the particle kinetic part of the hybrid model but with a given uniform
and constant electric field and background gas. Using the code also used for
the particle kinetic model also provides a further test case for the code.

The program solves the Boltzmann equation starting with a given initial
distribution function of the electrons and integrates their path given the
electric field. The program waits a given time for the EDF to obtain a
steady solution until it starts collecting data. Using the data from the
program the drift velocity is obtained. This has been used to calculate the
effective mobility coefficient (µ = E/vd). An example of this approach is
shown in 9.1.

Some work has also been done on obtaining diffusion coefficients but at
the time the calculations where carried out it was not yet possible to obtain
reliable diffusion coefficients. Diffusion coefficients can be obtained with the
magboltz program by S. Biagi. Since the magboltz program also returns
the mobility, it can also be used to verify the Micro-dis code.

The magboltz [37] program, originally written by S. Biagi from cern,
and now maintained by R. Veenhof, does a Monte Carlo integration of the
Boltzmann transport equation. The program output yields anisotropic diffu-
sion and mobility coefficients as well as Townsend coefficients and the EDF.
By running this program over a wide range of values for the electric field
at a pressure of 0.5 Torr Xe and a temperature of 300K the results found
in figures 9.2 and 9.3 are produced. The former also shows, for comparison,
value for the mobility of electrons in xenon as found in literature. Note the
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peak in those values from literature values, due to the Ramsauer minimum.
As the error in the Monte Carlo models is large at low electric field strengths
the Ramsuaer minimum is less pronounced in the results from these models.

9.2 Verifying the Coefficients

The accuracy of the data predicted by a numerical experiment is best checked
by comparing the results with known experimental results. Unfortunately,
no experimental results are available in the regime under which the hollow
cathode operates. The spontaneous breakdown of the gas would make it
near impossible to get accurate experimental data.

Experimental results are available for lower field values. The results
from the Monte Carlo drift experiment have been compared with values
from [40]. The results for the mobility can also be compared with those
from the numerical drift experiment done with the Micro-dis Monte Carlo
code[33]. The results from the calculations are presented in figure 9.2. There
are large discrepancies at low values for the electric field. This is because
of statistical fluctuations in the drift velocity. In particular, the Ramsuaer
minimum causes a large peak in the mobility coefficient. This is clear in
the values from literature, but less so in the drift experiment. The relative
error in these fluctuations is large when the field is small. The values at low
electric fields are not important for the hollow cathode though. For higher
values of the reduced electric field the result converges with the experimental
values. The magboltz calculations are also consistent with those from the
Monte Carlo drift experiment that uses cross sections from a different source
and a slightly different method.

Together with the “temperature” (using kT = 2
3ε, with ε the average

energy) from the EDF one can check the validity of the Einstein relation as
well as the generalized Einstein relation using anisotropic temperatures. As
becomes clear by examining the results in figure 9.4 Mv2

d is always much
smaller than the average swarm energy. The same figure also shows the
central problem with the approach of calculating the transport properties of
electrons by looking for a steady state solution for the drift velocity, while
taking only the first ionization step into account. While higher electric
fields would cause further ionization in practice, the model knows no such
ionization steps, and instead the average energy of the electrons increases.
Furthermore, the steady state solution sought in the drift experiment does
not resemble the conditions in the hollow cathode during the initial phases
of the discharge.
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The result for the diffusion coefficients are presented in figure 9.3. As
can be clearly seen in the graph the calculated diffusion coefficients are
anisotropic, with the largest differences between 1 and 100 V/m. The dif-
ference between the generalized Einstein relation and the usual Einstein
relation is small for these fields though, as the correction is small. For
electric fields between 200 and 1×106 V/m the anisotropy is smaller. For
these values the generalized form of the Einstein relation does not help to
increase accuracy, though. The proposed anisotropic diffusion model had
best be discarded when modeling hollow cathode discharges.
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Figure 9.3: Diffusion according to the Einstein relation compared to results
from magboltz.

9.3 Conclusion

The results from the numerical experiments show that the assumptions re-
quired to allow the use of mobility and diffusion coefficients and the drift
diffusion equation to study the breakdown of the plasma are not consistent
with the conditions in the hollow cathode. To examine the transport of
electrons in the early phases of the breakdown it is necessary to solve the
momentum equation in the time dependent form. Let us reexamine equation
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6.2:
ρp

∂~up
∂t︸ ︷︷ ︸
1

+ ρp (~up · ∇) ~up︸ ︷︷ ︸
2

= −∇ ·Pp︸ ︷︷ ︸
3

+ ~Fp︸︷︷︸
4

+
∑
j

~Fpj︸ ︷︷ ︸
5

.

Consider the condition were one applies an electric field of 105 V/m to a
xenon gas with neutral xenon density of 1021particles/m3. The electron
density is still low (1014 m−3). The dimensions of the vessel are 1 cm.

term 1 For highly transient plasma the time dependency cannot be ignored.
This is particularly the case for the ions, but to a lesser degree even
for the electrons.

term 2 This term can be safely ignored for a gas this dilute.

term 3 This term accounts for Coulomb collisions between like species.
Removing it would allow infinite gradients. One can approximate it
with kTp∇np. With a temperature of the order of 1 eV this results in
an order of magnitude of 10−3 N/m3.
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term 4 This term is the driving force. At the electric field under consid-
eration the force on a single charged particles is 1.6 × 10−14 Newton.
This brings the order of magnitude of the term to 1 N/m3.

term 5 In this term we need only consider collisions with neutral species.
There are simply to few of the other species to collide with. Estimating
the collisional rate for elastic electron xenon collisions to be of the
order of 10−13 m3/s, the order of magnitude of this term is estimated
to be 10−3kgm−4 times the speed. This term becomes effective as the
average drift speed increases, working to put a limit on this increase.
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Chapter 10

Conclusions

Hollow cathode discharges for the production of EUV light are highly tran-
sient and far from equilibrium. During a time scale of 100 ns several Joule
of energy are pumped into a small device (approximately 10 cm3) filled with
xenon to a low pressure of 20 Pascal. This makes modeling of the discharge
difficult, especially since the discharge goes through several phases. Ap-
proximations valid in one phase of the discharge will not be valid in another
phase.

After examining existing methods of modeling pulsed hollow cathode
discharges, the choice was made to use plasimo as part of a hybrid Monte
Carlo-fluid model. A number of extensions have been added to facilitate the
modeling of this type of highly transient discharge. These extensions have
been verified using a number of test cases. A number of issues, however,
remain to be solved before a working model can be constructed.

Many of the items named in section 6.1 have been implemented. To
recuperate:

The diffusion model A diffusion model has been implemented that solves
the transport equation for the electrons without assuming quasi-neutrality.
Some work remains to be done on solving the momentum balance
through an approach not involving the use of the drift-diffusion equa-
tion. This is discussed in the section on remaining issues.

The Poisson equation An EM module has been added that returns the
electric field given the space charge distribution.

The particle kinetic model An interface has been built that allows the
use of the Monte Carlo code from Micro-dis to calculate ionization
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rates in plasimo . Because of its general setup it can also be used for
other reaction rates.

Secondary electron emission A module has been added that injects elec-
trons into the particle kinetic model to simulate secondary electron
emission from the surfaces of the hollow cathode. The module uses
the ion flux to the surface from the fluid model to calculate how many
particles it needs to inject. The module was constructed by relying on
the code from plasimo ’s module for boundary conditions.

Projection and interpolation Code has been implemented to interpo-
late quantities defined on a grid to positions required by the particle
kinetic module. Vice versa, code has also been written to project po-
sitions in the particle kinetic module back onto the grid. The latter
can be used to obtain ionization rates for use in the fluid model.

Though much work has been done on the required extensions some issues
still remain before a working module can be constructed. The remaining
issues are discussed section 10.2.

10.1 Test Cases

The Monte Carlo code from the Micro-dis project has been subjected to
two separate test cases. One test case examined the behavior of a swarm
of electrons in xenon accelerated by uniform electric field. The results from
this test case indicate that the mobility and diffusion coefficients can be
calculated to good accuracy with literature values in the range of 0.1 to 1
V/(cm torr)1. This is well below the operating regime of the pulsed hollow
cathode discharge. Since no reliable data was found for the regime in which
the hollow cathode is operated the results from the Micro-dis code were
compared with those from magboltz. These results also compare favorably.

The results, however, also show that an approach using a lookup table
for the diffusion and mobility coefficients as a function of the reduced electric
field is not well suited for the regime in which the hollow cathode for EUV
production is operated. This is because the reduced field approximation
seeks a static solution to the BTE while the plasma in the hollow cathode
is highly transient. As a result the average kinetic energy of the electron
swarm reached is, therefore, unrealistically high (greater than 100 eV, where

11 V/(cm torr)=0.752 V/(m Pa)
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the electron temperature for the bulk electrons is expected to be well below
the first excitation energy of 8.3 eV).

The test case simulating the diffusion of hydrogen in a background of
xenon also validates Broks’ “Knudsen” correction model. This model is
shown to work in the regime for which it is intended; a fluid in which the
mean free path of the particles is of the same order of magnitude as the length
of the vessel. Thus stage of recombination in the pulsed hollow cathode
discharge can be reliably modeled with this approach.

10.2 Remaining Issues

In order to achieve a working model of the hollow cathode a number of
remaining issues need to be addressed.

Geometry The most significant remaining issue in terms of the necessary
effort on the part of the programmer is addressed in appendix B: the
geometry of the problem. The geometry of the hollow cathode is an
essential part of the hollow cathode effect. At the moment the code
cannot handle more complicated geometries. An extension is needed to
deal with more complex grids than the present rectangular coordinate
spaces.

Transport properties A second problem remains in terms of the trans-
port properties for the bulk of the (slow moving) electrons.

Assembly A third, and by no means trivial, remaining issue is the assembly
of all the parts into a working model. This will involve further testing
and debugging.

10.3 The Drift-Diffusion Equation

The use of the drift-diffusion equation to model pulsed hollow cathode dis-
charges has been examined and found to be fraught with difficulties. Under-
lying assumptions, such as a small mean free path of the electrons compared
to the size of the vessel as well as the local field approximation, are not gen-
erally valid in the regime in which hollow cathode discharges are operated.
Modified fluid approaches, such as introducing anisotropic temperatures, or
using lookup tables of the mobility coefficients as a function of the reduced
electric field, do not suffice to solve these problems.
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10.3.1 Another Approach for Particle Transport

At high electric fields, the current approach in using the drift-diffusion equa-
tion causes un-physically high drift velocities. One possible approach to
solving this problem is to cut off bulk drift velocities above the thermal
velocity belonging to the Maxwellian distribution function at the given elec-
tron temperature. Such an approach is consistent with the model in which
the EDF of the electrons is assumed to deviate from Maxwellian in the tail
only, with that tail fraction forming a small fraction insignificant to the
transport of charge. A cut-off approach, however, ignores the underlying
problems which cause the un-physically high drift velocities related to the
long mean free path of the electrons.

A reexamination of the derivation of the drift-diffusion equation, how-
ever, shows that it is probably a much better idea to use a different ap-
proximation to the momentum balance. Instead of a quasi-static approach,
one should follow an inertial approach. Such an approach would include
the time dependent term, as well as the electric field and the elastic colli-
sions with neutral atoms. The pressure gradient should be included to avoid
un-physically high gradients.

Another possible approach would be to follow all electrons with the par-
ticle kinetic model. Care will have to be taken, however, with the numerical
difficulties that may arise with this approach. Statistical fluctuations in the
density of the electrons may be amplified by the Poisson solver. This prob-
lem can be solved with the use of adequate filters. To date, however, such
filters are still under development for the Micro-dis Monte Carlo code.

10.3.2 Filters

The lack of filters to even out statistical fluctuations is also cause for concern
in obtaining accurate ionization rates. The currently implemented approach
projects the positions of the ionization events on the grid. At the end of
each timestep the ionization events per grid cell are counted and the rate is
determined by directly dividing the number of ionization events by the time
step to arrive at the ionization rate for that gridcell. This approach causes
large statistical fluctuations when the ionization rate is low. The use of a
filter to smooth out the peaks in time and space could serve to limit such
statistical fluctuations and improve the numerical stability.
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Figure 10.1: An example of why filtering is necessary. The figure shows
the ionization rate (units m−3 s−1) as determined by directly projecting the
number of ionization events onto the grid during one time step.

10.3.3 The Energy Balance Equation

Another outstanding issue is the energy balance for the electrons. The
focus of this work has been the formulation of the momentum transport,
but one of the strengths of plasimo and an important reason for the choice
of plasimo over the Micro-dis code is its handling of the energy balance
equations. However, the simplified form of the energy transport equation
used in the code relies on assumptions similar to those in the drift-diffusion
equation. For example, a short mean free path of the electrons is assumed.
A proper examination of the validity of the assumptions used is also needed.
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10.4 A Final Word of Advice

Much of the remaining work requires good insight in software architecture
and programming techniques. The author has spent a significant portion of
the total time allocated for his graduation project learning C++ and gaining
insight into plasimo ’s design. Although the code has been written in such
a way as to be modular in design and to allow extensions, such extensions
are only easy to write if they can be implemented as simple plugins without
requiring the rewriting of other parts of the code. This was not the case
for the removal of the assumption of quasi-neutrality, and the interfacing of
Monte Carlo collisional models with plasimo .

Further modification of the code currently used to represent the grids will
require substantial reconstruction. It is not recommended that a graduate
physics student attempt such an undertaking as part of the research towards
a masters thesis as he or she may end up spending far more time on coding
than on physics. As part of a PhD the time spent on obtaining the required
level of programming skills and insight into plasimo ’s design would be
better spent, as time would remain to make good use of such skills.
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A Note on the Use of Subscripts

In most of this work subscripts are used to differentiate between quantities
per species. For this purpose the subscript p is used; except in those cases
where an additional subscript is needed to differentiate different species, in
which case a subscript j is used. For example, ~Fpj is used to represent the
force per unit volume from the interaction between species p and species
j. In the discussion on the Boltzmann transport equation they are largely
omitted to avoid clutter. In a few cases subscripts are used for other purposes
(such as indicating coordinates, indicated by the subscript i). These cases
should be clear from the context. Note also that the mass density for a
species p is notated as ρp not ρm,p.

72



Bibliography

[1] ASML press release, http://www.asml.com

[2] J.E. Bjorkholm, EUV Lithography - The Successor
to Optical Lithography? available for download from
http://www.intel.com/technology/itj/q31998/pdf/euv.pdf.

[3] Remko Stuik Characterization of XUV Sources Technische Universiteit
Eindhoven, thesis. 2002

[4] E. R. Kieft, J. J. A. M. van der Mullen, G. M. W. Kroesen, and V.
Banine, Time-resolved pinhole camera imaging and extreme ultraviolet
spectrometry on a hollow cathode discharge in xenon Phys. Rev. E 68,
056403 (2003).

[5] F. Paschen, Wied. Ann. 37 (1889) 69

[6] Yu. P. Raizer Gas Discharge Physics, Springer 1991

[7] J. Christiansen and Ch. Schulteiss Production of High Current Particle
Beams by Low Pressure Spark Discharges Zeitung für Physik A 290, 35
(1979

[8] D. Bloess et. al. Triggered pseudo-spark chamber as a fast switch and
as a high-intensity beam source Nuclear Instruments and Methods 205
(1983) 173-184

[9] L.C Pitchford, N. Ouadoudi, J.P. Boeuf et. al. Triggered breakdown in
low-pressure hollow cathode (pseudospark) discharges. J. Appl. Phys. 78
(1), 1 July 1995

[10] N. Baguer, A. Bogaerts, R. Gijbels Hybrid Model for a cylindrical hollow
cathode glow discharge and comparison with experiments. Spectrochim-
ica Acta B. 57 (2002)

73



[11] K. Bergmann, O. Rosier, W. Neff and R. Lebert Pinch-plasma radia-
tion source for extreme-ultraviolet lithography with a kilohertz repetition
frequency. Applied Optics, 29 (2000) 3833-3837

[12] Günterschulze Z. Physik 19, 313 (1923)

[13] K. Garloff, J. v.d. Mullen Modeling pinced plasmas for EUV generation:
Achievements and challenges. Internal report for the plasimo group.

[14] V.I. Kolobov and L. Tsendin Analytic model of the hollow cathode effect.
Plasma Sources Sci. Techn. 4 (1995) 551-560

[15] R.R. Arslenbekov, A.A. Kudryavtsev, and I.A. Movchan Spatial and
energy distributions of fast electrons in discharges with a cylindrical
hollow cathode Sov. Phys. Tech. Phys. 37 4 (1992) 395-398

[16] R.R. Arslenbekov, A.A. Kudryavtsev, and I.A. Movchan Slow electron
distribution function in a cylindrical hollow cathode Sov. Phys. Tech.
Phys. 37 6 (1992) 620-624

[17] Cai, S.Y.; Striffler, C.D.

[18] R. Werner, Private communications

[19] Hoyoung Pak and Mark J. Kushner Breakdown characteristics in non-
planar geometries and hollow cathode pseudospark switches J. Appl.
Phys. 71 1 (1992) 94-100

[20] B.H.P. Broks Extending the capabilities of a plasma simulation model
Technische Universiteit Eindhoven, masters thesis

[21] David Chandler, David Wu, emphIntroduction to modern statistical
mechanics, Oxford University Press, 1988

[22] Kerson Huang, Statistical Mechanics, John Wiley & Sons, Inc. 1963

[23] D.C. Schram, R. Engeln, Inleiding Plasmafysica, Eindhoven University
of Technology lecture notes, 1997.

[24] D.A. Benoy Modeling of thermal Argon Plasmas Eindhoven University
of Technology, Phd thesis, 1993

[25] J. van Dijk, Modelling of Plasma Light Sources an object-oriented ap-
proach, Thesis Eindhoven University of Technology 2001

74



[26] Jan van Dijk, Ger Janssen, Dany Benoy, Harm van der Heijden, Bart
Hartgers, Colin Johnston, Kurt Garloff, Marnix Tas, Joost van der
Mullen Plasimo: A General-Purpose Toolkit for Plasma Modelling In-
ternal report (usually referred to as “plBook”). One-dimensional simu-
lation studies of breakdown and electron beam generation processes for
a hollow cathode pseudospark discharge IEEE Particle Accelerator Con-
ference 17-20 May 1993, Proceedings Page(s): 3075 -3077 vol.4

[27] A.V. Vasenkov, B.D. Shizgal Numerical study of a direct current plasma
sheath based on kinetic theory, Physics of Plasmas, vol 9 (2) 691-700
(2002)

[28] B. Hartgers Modelling of a Fluorescent Lamp Plasma PhD thesis, Eind-
hoven University of Technology, The Netherlands, 2003. available for
download from http://plasimo.phys.tue.nl/publications.

[29] L.L. Alves, G. Gousset, S. Vallée, Nonequilibrium Positive Column Re-
visited Special Issue IEEE Transactions on Plasma Science, aug. 2003.

[30] G. Hagelaar Modeling of Microdischarges for Display Technology, PhD
thesis, Eindhoven University of Technology, The Netherlands, 2003.
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Appendix A

Code Issues and
Implementation

A.1 Object Oriented Programming

Both plasimo and the Monte Carlo code are object oriented in design. This
means that data and functions (or methods as they are called in C++) are
grouped together in data structures called classes in C++. Instances of
such a data structure are called objects, hence the name object oriented
programming. The access to the data and functions between classes goes
through an interface. In effect, most of the data a class uses is shielded from
other classes to avoid this data being accidentally overwritten. In C++
the interface between classes is formed by the public members of that class.
The private data, on the other hand, is shielded off from other data by the
compiler.

Object oriented programming languages also know the concept of inher-
itance. A class can be derived from a base class. The derived class then
inherits all the data and member functions from that base class. This pro-
cess is known as inheritance and is fundamental to object oriented design as
it allows one to express the degree of communality between data structures.

There is neither time nor space in this report to delve into great depth
on the topic of object oriented programming. Readers interested in C++
and object oriented design should check out Stroustrup’s book on the matter
[42]. The design of plasimo is discussed in Van Dijk [25]. The latter also
discusses the use of run time extensions in plasimo .
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A.2 The Plasimo/Monte Carlo Bridge Class

In order to exchange information between the Monte Carlo code and plasimo
a bridge class is needed. This bridge class is derived from the mcenviron-
ment class [33] to pass on information required for the calculation of the
path of the particles, such as the electric and magnetic field strength in a
certain point.

The public and protected members of the class are as follows:

class mcEnvironment pl : public mcEnvironment
{

public:
/∗∗ Constructor ∗/
mcEnvironment pl(plSpeciesModelRegion ∗ region);
/∗∗ Destructor ∗/
virtual ˜mcEnvironment pl() {}
//returns md2d style material properties at \a pos.
virtual unsigned VesselMaterial(const mcGeomVector<3>& pos) const
{ return (!InsideVessel(pos));

/∗∗Plasimo doesn’t know about materials, so
∗return 1 if outside of vessel

∗/
}
/∗∗ Returns the normal on the tangent plane through pos,
∗ Given a reference to a position pos the function
∗ finds the nearest wall point and changes pos accordingly,
∗ A reference to the norm (pointing inwards) is also returned.
∗ This function should be useful for anything to do with
∗ wall−reactions. The work is done by the SymmetryTransform

class ∗/

virtual const mcGeomVector<3> & VesselWall(mcGeomVector<3>& pos) const
{

return m sth−>VesselWall(pos, m region−>Grid()−>cd1(),
m region−>Grid()−>cd2());

}
/∗∗ Whether \a pos is inside the vessel : ∗/
bool InsideVessel(const mcGeomVector<3>& pos) const
{

// Our present InsideFDGrid func only works for non−OCL grids
assert (m region−>Grid()−>Type()!=GridDefs::OCL);
return InsideFDGrid( (∗m region−>Grid())(plGrid::LocNP),

m sth−>Project(pos) );
}
mcGeomVector<3> GenRandLoc() const;
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//const accessors for help with 2D<=>3D conversions
const Locate& LocateHelper() const { return m loc;}
const SymmetryTransformBase∗ STH() const { return m sth;}

///accessor for the ion . rates
plPtrVector<MCRateDensity>& Rates() { return m rate densities;}
/// initialize above rates:
void InitRates(const mcProcessContainer& procs);

protected:
/∗ returns a reference to the electric field at \a pos. ∗/
virtual mcGeomVector<3>& E(const mcGeomVector<3>& pos) const;
/∗ returns a reference to the magnetic field at \a pos. ∗/
virtual mcGeomVector<3>& B(const mcGeomVector<3>& pos) const;
/∗∗ Function which should be called at the beginning of a simulation
∗ to get the density swarms into the swarmlist \a swl. ∗/

virtual void AddDensitySwarms(const mcSpeciesList& spl,
mcSwarmList& swl);

/∗∗ Particle Injector : this function is to be called once, at the
∗ start of the simulation , to inject the particles to be started off
∗ with. ∗/

virtual void InjectParticles (mcSwarmList& swl, double t=0.0);
/∗∗ Particle Injector : given time \a and timestep \dt this function
∗ can inject particles into members of \a swl. ∗/

virtual void InjectParticles (double t, double dt, mcSwarmList& swl);
// initialize the rates container:

...

Member functions such as VesselMaterial(. . . ), and E(. . . ) are imple-
mentations of member functions of the mcEnvironment class that this class
is derived from. The constructor takes a pointer to an object of the plSpecies-
ModelRegion type. This object is used in plasimo to store information (or
references to that information) that is relevant to a region used in a model of
the plSpeciesModel type. One of the member functions, for example, returns
the grid for the region in question. In a slightly more indirect manner in-
formation such as the electric and magnetic field can also be obtained. The
mcenvironment pl class uses information from plasimo and returns them
in a format required by the Monte Carlo code.

A.2.1 Interpolation and Projection

Since plasimo uses two dimensional grids of various types and the Monte
Carlo code uses 3D grid-less positions and velocities one needs to imple-
ment methods to project these 3D positions on 2D grids and interpolate the
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quantities on the grids back to values in 3D space. To this end a number
of classes are introduced. A class Locate is used to find which cell a partic-
ular point is in. This uses a simple recursive search algorithm to find the
nearest discrete gridpoints; starting with the gridpoint it would be found on
in an equidistant grid. An pure virtual class SymmetryTransformBase and
three derived classes ( SymmetryTransformCylindrical , SymmetryTrans-
formCartesian and SymmetryTransformSpherical) are used for transforma-
tions from 2D to 3D and vice versa.

The full listing of SymmetryTransformBase is as follows:

class SymmetryTransformBase
{
public:

///c’tor
SymmetryTransformBase() {}
virtual ˜SymmetryTransformBase() {}
typedef mcGeomVector<3> mcvec3D;
const RPos& Project(const mcvec3D& pos) const
{ return DoProject(pos);
}
const mcvec3D& TransformTo3D(const double& vec1, const double& vec2,

const mcvec3D & pos) const
{ return DoTransform(vec1, vec2, pos);
}
/∗∗Get the minimum and maximum x,y and z coordinates based
∗ on the properties of the 2D coordinates.∗/

void GetMinMax3D(mcvec3D& minxyz, mcvec3D& maxxyz,
const plCoordDef& c1, const plCoordDef& c2) const

{ MinMax3D(minxyz, maxxyz, c1, c2);
}
/∗∗ Returns the normal on the tangent plane through pos,
∗ Given a reference to a position pos the function
∗ finds the nearest wall point and changes pos accordingly,
∗ A reference to the norm (pointing inwards) is also returned.
∗ This function should be useful for anything to do with
∗ wall−reactions.

∗/
const mcvec3D& VesselWall(mcvec3D& pos, const plCoordDef& c1,

const plCoordDef& c2) const
{

return GetVesselWall(pos,c1,c2);
}
/∗∗expand a 2d vector, given an extra coordinate zeta between zero
∗and 1 to a 3d carte Sian vector in such a way that all of space can be
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∗addressed.
∗/
const mcvec3D& Expand(const RPos& pos2d, double zeta) const
{

return DoExpand(pos2d, zeta);
}

protected:
///Project a 3d vector onto a 2D surface
virtual const RPos& DoProject(const mcvec3D& pos) const=0;
///given the two components of a vector and the position,
///transform this to a 3D vector.
virtual const mcvec3D& DoTransform(const double& vec1,

const double& vec2,
const mcvec3D& pos) const=0;

///Get a box surrounding the area
virtual void MinMax3D(mcvec3D& minxyz, mcvec3D& maxxyz,

const plCoordDef& c1, const plCoordDef& c2) const =0;
virtual const mcvec3D& GetVesselWall(mcvec3D& pos,

const plCoordDef& c1,
const plCoordDef& c2) const = 0;

virtual const mcvec3D& DoExpand(const RPos& pos2d,
double zeta) const =0;

//optimization:
mutable RPos m pos2d;
mutable mcvec3D m vec3d, m norm, m expanded;

};

Notice that the protected member functions are all virtual. These are
geometry dependent and are all implemented in the derived classes. For
example, the DoProject member of the SymmetryTransformCylindrical class
is implemented as follows

const RPos& SymmetryTransformCylindrical::DoProject(const mcGeomVector<3>& pos) const
{

m pos2d.Y()=sqrt(pos[0]∗pos[0]+pos[1]∗pos[1] );
m pos2d.X()=pos[2];
return m pos2d;

}

while for the SymmetryTransformCartesian class the transformation is the
trivial:

const RPos& SymmetryTransformCartesian::DoProject(const mcvec3D& pos) const
{ m pos2d.X() = pos[0];

m pos2d.Y() = pos[1];
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return m pos2d;
}

The mcEnvironment pl class’ constructor then examines what type of
grid is being used and then constructs one of the transform classes. In the
mcEnvironment pl constructor one finds :

switch(region−>Grid()−>Type())
{

case GridDefs::Cylindrical :
m sth = new SymmetryTransformCylindrical;
break;

case GridDefs::Cartesian :
m sth = new SymmetryTransformCartesian;
break;

case GridDefs::Spherical :
m sth = new SymmetryTransformSpherical;
break;

default:
throw plException(”Non−standard (OCL) grid”);

}

A.3 Interfacing Monte Carlo Data with plasimo

Apart from obtaining information such as the magnitude and direction of the
electric field at a given point for use in the Monte Carlo Code one also needs
to get information from the Monte Carlo code back to the fluid model. This
work is divided over a number of classes. The mcStatistics pl class collects
information on collisional processes such as ionization events. Through the
input file one can specify a list of processes for which statistics are to be
gathered. Every time such an event takes place the member records the
position in 3D space at which this event has taken place, the number of real
particles involved, the mass of these particles and the time at which this
collision took place. This information is stored in a buffer. At the beginning
of every time step in the fluid model the information from the last time step
is processed for all processes in the list, after which the buffer is cleared of
old events. The processed information is stored in a format that plasimo
understands. The public members from the header file are as follows:

class mcStatistics pl : public mcStatistics
{

public:
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mcStatistics pl (const plNode& node)
: mcStatistics(node) {
m data buffer. resize (0);
m indxs.resize (0);

}
˜mcStatistics pl () {}
virtual void AtCollision(unsigned procindex,

const mcParticle& p1, const mcParticle& p2)
{ //just pop it into the buffer and deal with it later :

if (std :: find(m indxs.begin(),m indxs.end(),procindex)
==m indxs.end())

{
Log(1)<<procindex

<< ” not in list. Not added to buffer.\n”;
return;

}
m data buffer.push back(

new CollisionData(procindex,p1,p2));
Log (1) <<”added collision data to buffer for procedure” <<procindex<<”\n”;

return;
}
///calculate the density of collisions
/∗∗ Calculate the collision density rate per volume cell matching
∗ procindex between the times t1 and t2. Needs a reference to a Locate
∗ object and a SymmetryTransformBase pointer
∗ to project the 3D positions onto the 2D grid and find the appropriate
∗ cell ∗/

void RateDensity(plGridVar<double>& dens,
unsigned procindex,
double t1,
double t2,
const Locate & lh,
const SymmetryTransformBase∗ sth) const;

//add the index of a proc. index to keep track off :
void AddProcIndex(unsigned i) { m indxs.push back(i);}
virtual void WriteFinalResults() {}
///get rid of data older than time t.
void ClearBuffer(double t);

...

Note that the RateDensity member uses a reference to an object of the
plGridVar type. The information is actually stored inside an object of the
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mcEnvironment pl type, where the object is also initialized. The reason for
this is that the statistics class has no knowledge of plasimo ’s grids. This
information is privy to the mcEnviroment pl class. The mcEnviroment pl
class also contains a reference to the modelregion, which in turn, can be used
to access an object of the plFieldValueMap type. This object can be used
to access a wide variety of data for different grid locations and particles.
See [28], section 4.2 on a discussion on how this is implemented. The rates
per recorded process are stored per gridcell on the two dimensional grid.
References to objects containing this data are stored in the plFieldValueMap
object. Plugins, used to calculate rates in plasimo can access this object,
and through it get the information required from the Monte Carlo part of
the code.

A.4 Model Plugins

Plasimo can be used to calculate many different types of problems. These
all require different models. The models themselves are implemented as
plugins. The hybrid kinetic-fluid model is itself a plugin. Since the fluid
part of the code is essentially the same as the pre-existing non-LTE model
the hybrid model is derived from the nLTE model. The class definition from
the header file is shown below.

//Derive from plPlasmaNLTEModel since Hybrid MC−fluid models are
//going to be far from LTE.
class NLTEHybridModel : public plPlasmaNLTEModel
{

public:
NLTEHybridModel(const plNode &node) : plPlasmaNLTEModel(node)

{ m fc. resize (NRegions());
m env.resize(NRegions());
m stat. resize (NRegions());
//just to be on the safe side :
for (unsigned i=0; i<NRegions(); ++i)
{ m env[i]=0; m env[i] =0; m stat[i]=0;
}
Log(2) << ”Creating hybrid model” << std::endl;

}
const mcFlightControl& FlContr(unsigned i) const { return (∗m fc[i]); }
mcFlightControl& FlContr(unsigned i) { return (∗m fc[i]); }
mcStatistics& Statistics (unsigned i) { return (∗m stat[i]); }
virtual void Prepare();
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virtual ˜NLTEHybridModel(){ }
bool Finished() const;
virtual void Update();

private:
//What’s in a name? Helper function used by Update();
void DoMCStuff();
void Cleanup();
//these are pointervectors , to allow for multiple regions .
//However, no interaction between regions is taken into account.
plPtrVector<mcFlightControl> m fc;
plPtrVector<mcEnvironment pl> m env;
plPtrVector<mcStatistics pl> m stat;

};

Notice the private members plPtrVector<mcFlightControl> m_fc ,
plPtrVector<mcEnvironment_pl> m_env and plPtrVector<mcStatistics_pl> m_stat .
These are linked lists containing pointers to objects of the types indicated
in the template argument. The class mcFlightControl is responsible for the
kinetic model. It tracks the progress of the superparticles and sets the col-
lision times. It also calls functions that handle the collisions. The Update
member is repeatedly called by plasimo until the boolean member Finished
yields a positive answer.

The implementation of this member is as follows:

void NLTEHybridModel::Update()
{

if (TimeStepping()&&plPlasimoModel::Finished()&&CheckTimeStep())
{

DoMCStuff();
// tell the statistics classes
//to gather rates .
const double t2 =Time();
const double t1 = Time() − TimeStep();
for (unsigned i=0;i<m env.size(); ++i )
{ //iterate over everything we want a rate for :

const plPtrVector<MCRateDensity> & rates =
m env[i]−>Rates();

//get rid of old data:
m stat[i]−>ClearBuffer(t1);
Log(1) <<”Getting the rates for ”

<<rates.size() << ”processes\n”; for (unsigned ri=0;ri<rates.size(); ++ri)
{

Log(1) <<”Obtaining rate nr” << ri <<”\n”;
m stat[i]−>RateDensity(rates[ri]−>GVar(),
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rates [ ri ]−>ProcIndex(),
t1,t2,m env[i]−>LocateHelper(),
m env[i]−>STH());

}

}
}
plModel::Update();

}

Notice the first statement. This line checks if the fluid part of the model
has converged for that timestep. If this is the case it moves on with the
kinetic part of the model. The member function DoMCStuff simply iterates
over all flightcontrollers telling each of them to proceed. The next part calls
on the environment to get a reference to the object which stores the rates,
and then passes this on to the mcStatistics pl type object to fill with the
actual rates. Finally, the fluid model is told to update its values.

A.5 The plMCRelationGroup class.

Processes such as ionization but also inelastic collisions in general are grouped
together in objects of the plRelationGroup type. These objects store ref-
erences to objects representing the different relations. The relation type
objects carry a reference to an object responsible for calculating the rate co-
efficient. The Monte Carlo code calculates the actual rates rather than the
rate coefficient. To be able to use the rates rather than rate-coefficients sev-
eral new classes were introduced: a class plMCRelationGroup derived from
plRelationGroup to store all the relations depending on the Monte Carlo
calculations, a class plDirectParticleRelation to allow for relations which de-
pend on the calculated rate rather than the rate coefficient, and a class plM-
CRate derived from the plRateCoefficient class that retrieves the rate from
the Monte Carlo calculation and passes it on to an object of the plDirect-
ParticleRelation type. See figure A.1 for a schematic view, as generated by
Doxygen1.

1Doxygen, developed by Dimitri van Heesch, is used to generate developer’s documen-
tation of source code. It is used for both MD2D and plasimo . It is available from
http://www.doxygen.org.
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Figure A.1: Relation graph as generated by Doxygen for the class plMCRate.

A.6 The Poisson Solver

The implementation of the method of solving the Poisson equation by writ-
ing it as a Φ equation is spread over a number of classes. the class plPoisson-
Variable, derived from plPhiVariable, initializes the ”diffusion” term, with
ε0 as the diffusion coefficient on the entire grid. the potential and the charge
density are defined in the plEMPoissondata class2, which also updates the
potential and calculates the electric fields from the gradient of that poten-
tial. the plEMPoisson class calls the field calculations for each region. For
testing purposes a new model has been defined, which is used to solve the
poisson equation for a given, fixed, charge density. the class for this model,
called plEMBoundedModel is derived from plGridModel.

2actually the potential is a derived member, plEMPoissondata just contains the charge
density.
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plPoissonVariable
derived from plPhiVariable
methods: plPoissonVariable (constructor) the construc-

tor takes a model region, a name and a node
as arguments and initializes the diffusion term
of the φ – equation with ε0 as the ”diffusion
coefficient”.

members: constterm class. this class is derived from
plDoublePhitermContribution and it is used
in the constructor above to produce a con-
stant field for the ”diffusion coefficient”.

defined in plgrid/poisson.h and
plgrid/src/poisson.cpp

plEMPoissonData
derived from plEMStaticPotentialdata
methods plEMPoissonData (constructor) the construc-

tor takes a model region and a node as argu-
ments and registers the net charge (read from
the node) as the source term of the φ – equa-
tion.
netcharge() this returns the net charge, as the
name suggests.
nonzerorho() this returns one. nonzerorho re-
turns one if charge density is taken into ac-
count (which is the case in this class), and
zero if it is not (in the plEMStaticPotential-
Data class).

members: m rho the charge density.
m rho cons a private member.

defined in plem/plugins/em poisson.cpp.
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plEMPoisson
derived from the plBaseEMProxy template using plEM-

PoissonData.
methods: plEMPoisson (constructor) simply calls the

plBaseEMProxy constructor.
doiteration( real) this function calls calculate-
fields(real) for each region.
createplasma( plModelRegion*, node) this
method calls the plEMPoissonData construc-
tor and returns a pointer to the region.

defined in plem/plugins/em poisson.cpp.

plEMStaticPotentialData
derived from plBaseEMData
methods: plEMStaticPotentialData(plModelRegion*,

plnode) (constructor) the constructor ini-
tializes the potential and the boundary
conditions.
calculatefields( real ) this function updates
the potential and calculates the electric fields
and the dissipation density.
accuracy() this returns the accuracy with
which the φ–equation has been solved.
nonzerorho() this returns zero (see the de-
scription for plEMPoissonData).

members: m potential the potential, of the type plPois-
sonVariable.

defined in plem/plugins/em pot static.h and
plem/plugins/em pot static.cpp .

A.7 Diffusion Without Quasi Neutrality

Plasimo can be used with several different diffusion models. Prior to
the addition of the non quasi-neutral diffusion these were: Fick diffusion,
“Knudsen” corrected diffusion, ambi-polar diffusion and full self-consistent
diffusion. Several combinations (combining the Knudsen correction with
ambipolar diffusion, for example) were also possible, but all implied quasi-
neutrality. To implement the non quasi-neutral diffusion a new diffusion
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manager class was added. This diffusion manager class adds objects rep-
resenting the density for each species. For each of these objects, including
the one representing the electron density a Φ equation is solved. For the
charged particles the drift velocity is calculated using the mobility and the
local electric field. The calculation of the drift velocity thus assumes the
validity of the drift diffusion equation. The mobility of the charged species
comes from a plugin. Two have been made thus far: one using a lookup
table, and one using the Einstein relation and the diffusion coefficient.

A.8 Anisotropic Diffusion

The implementation of anisotropic diffusion is spread over several classes. To
calculate anisotropic diffusion coefficients a plugin is needed. A base class
for this plugin is provided called plAniDiffusion. The implementation of
anisotropic diffusion is spread over several classes. To calculate anisotropic
diffusion coefficients a plugin is needed. A base class for this plugin is
provided called plAniDiffusion.

class plAnisotropicDiffusion : public plDiffusion
{

public:
/∗∗ constructor . Calls the base class constructor,
∗ m flag is initialized to zero.
∗/

plAnisotropicDiffusion ( const plNode& node,
const plParticleMap& pmap,
const plBaseRelationMap& rmap)

: plDiffusion (node,pmap, rmap) , m flag(0)
{ }
///Set the value of m flag (see DoCalculate comments).
virtual void SetFlag(int flag) { m flag=flag;}
///Returns value of m flag:
virtual int GetFlag() { return m flag;}
/∗∗ Depending on the value of m flag DoCalculate returns either the
∗diffusion coefficient in the direction of the first (m flag=0)
∗or the second coordinate (m flag != 0). This is the only thing
∗ you need to implement in the derived class .
∗/
virtual void DoCalculate( const plParticleValue<REAL> &res,

const plCrossSectionMatrix & cs,
const plConstValueRef<REAL> & point )=0;

private :
/∗∗store the direction we want the diffusion for :
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∗ m flag = 0 : first dimension c1 in grid .
∗ m flag = 1 : second direction : c2 in grid .
∗ Used in DoCalculate, set with SetFlag(int flag ), access with
∗ GetFlag(). Setting is done in the class plAniDiffTerm.
∗/
int m flag;

};

Plugins for anisotropic diffusion should have a member DoCalculate that re-
turns a diffusion coefficient in the direction specified. For historical reasons,
the direction is not an argument of DoCalculate but has to be set seper-
ately. Depending on the origin of the anisotropy the one can use different
plugins to obtain different results. A plugin using anisotropic temperatures
and a generalized Einstein equation to arrive at anisotropic diffusion coeffi-
cients has already been written, but someone wanting to study magnetized
plasmas would only have to write a new plugin.

Using anisotropic diffusion also has its effect on the Φ equation. For
isotropic diffusion the diffusion coefficients are calculated using the values
at the center of the grid cell. These are then interpolated to the boundaries
of each grid cell, where they determine the flux across the grid cell’s bound-
ary. The anisotropic diffusion coefficients also typically depend on quantities
known for the center of the grid cell. To solve the Φ equation for density in
the case of anisotropic diffusion coefficients two sets of coefficients are kept,
and interpolated to the appropriate boundaries.

Anisotropic diffusion can be turned on or off at will in the input file.
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Appendix B

The Introduction of
Sub-regions, a Proposal

B.1 Introduction

The finite volume methods on structured grids used in plasimo are ill suited
for more complex geometries. There are many geometries one would like to
investigate that cannot currently be handled (the hollow cathode geome-
try) or can only be handled with difficulty and highly specific plugins (the
cascading arc).

The use of ortho-curvilinear grids is appropriate for smooth geometries
such as the QL-lamp but it does not work well with sharper boundaries
such as jumps in diameter in a cylindrical geometry. One method of dealing
with irregular geometries in combination with finite volume methods on a
orthogonal grid is to block off regions of the grid[41], as in figure (B.1).
Given different regions on the grid one can then proceed to ”maltreat” the
different terms of the Phi equation accordingly. To fix the value of a variable
described by the phi equation, for example, one can set large source terms
(both linear, and constant) so that the effect of the other variables vanishes.
There are many other ways one can handle or abuse the differential equations
once different regions can be specified. In flow calculations, for example
one can set the viscosity at large values for the blocked-off regions so that
effectively no flow occurs in those regions. To avoid confusion with the
”regions” concept in plasimo I will refer to these blocked-off regions as
”subregions”.
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Figure B.1: Blocking off regions on a coarse grid.

B.2 Specifying and Parsing Subregions

If one is to allow subregions there has to be a mechanism in place to allow
specification and parsing of these regions by plasimo through the input
file. The method of doing so has to be flexible to allow for many different
geometries while not frustrating users who do not need the subregions with
demands for irrelevant information. The changes made should not ”break”
old input files - these should still function as before. One way of doing this
would be to introduce polygons, specified by the positions of their nodes on
the carte Sian projection of the grid. The input file than specifies a series
of regions, and each regions is a collection of points defining a polygon (see
figure B.2). For each gridvariable (and by extension derived classes) it will
then be possible to specify different properties for different sub-regions. This
will be done along the lines of Bart Broks ”time schedule blocks”. That is,
failing more information in the input file the same properties are assumed
to hold on the entire region.
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Figure B.2: Some polygons on a grid.

B.3 The Implementation

To implement the subregions a number of classes are defined. One class
handles the definition of the polygons (a collection of points and lines) using
the node to construct them. This class also has a member function which
returns a boolean indicating if a specified point is on its inside or outside.
Additionally, the polygon shape class will hold a name tag. Another class
holds a collection of these polygonal shapes and has a member function indi-
cating in which polygon a specified point is in. One could follow the MD2D
convention and return 0 for a point that is not inside any sub-region and
an integer numbering the sub-region otherwise. For purposes of avoiding
repeated use of the point location algorithm it should also contain four ma-
trices (one for grid location) with an unsigned integer indicating which sub
region each point on each grid is in. Thus, basically, an MD2D type geom-
etry will be generated on construction of this class, and on each subsequent
grid resize this geometry will be updated. This approach will allow greater
flexibility than the MD2D approach since the user will not be required to
redefine a new geometry file every time he or she decides to change the
number of gridpoints. Care will have to be taken, however, to update the
matrices every time the grid is changed.

The plPolygons class would look something like this (for the sake of
brevity the implementation of inline functions is omitted):

class plPolygons{
public:

95



//The c’tor, from node.
plPolygons(const plNode& node);
virtual ˜plPolygons() { }
//return the Label of the Polygon with index index.
std :: string ShapeLabel(unsigned index) const ;
//find the Shapenumber the testpoint is in, return
// 0 if not in any of the defined shapes.
unsigned ShapeNumber(const RPos& testpoint) const;
//return the Shapenumber for points on a grid
unsigned ShapeNumber(const Pos& p, plGrid::Location loc) const;
unsigned size() const;
//Update the matrices used for the function Shapenumber(p,loc)
//Call this after changing the grid.
void UpdateMatrices(plModelRegion∗ reg);

private:
/∗The class defining a polygon is called plShape
This is not to make things confusing but to avoid typo’s as
having one class called plPolygon and one called plPolygons is
likely to cause trouble . We store a pointervector of these shapes.
Alternatively one could derive this class from plPtrVector<plShape>.
∗/
plPtrVector<plShape> m shapes;

/∗The index of the last plShape found to contain a point.
Since the member unsigned ShapeNumber(const RPos& testpoint) is
likely to be called consecutively for points close to each other it
is efficient to start with the last ShapeNumber.
∗/
int m it;
/∗The shapenumbers on the points of the grid for each grid location .
(use enum location) ∗/

plGridVar<unsigned>[4] m geom;
};

Another class then uses the above to manage functions for a specific
property (e.g. a diffusion coefficient ). It would be somewhat similar to
Broks’ helper class [26] for the time blocks.

template <class T>
class plInteriorRegionHelper
{

public:
plInteriorRegionHelper( plPolygons∗ InteriorRegions ,

const std:: string Param,
const std:: string ParamUnit);

˜plInteriorRegionHelper() {}
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//sanity checker for an interion region,
void TestRegion(const std::string function,

const plNode& node);
//sanity checker for all int . regions
void ParseRegions(const plNode& node);
// Get the function belonging to one of the regions , given a
std :: string GetFunction(const plNode& IRnode,

const RPos& testpoint) const;
// Same thing but on a grid point
std :: string GetFunction(const plNode& IRnode,

const Pos& testpoint,
plGrid::Location loc) const;

//Get the value on a point
T SetParam(const plNode& IRnode, const RPos& point) const;
//And again overloaded for gridpoints:
T SetParam(const plNode& IRnode, const Pos& point,

plGrid::Location loc) const;
private:

std :: string m param, m unit;
plPolygons∗ m int regions;

};

Using the helper class above gridvars can be initialized or calculators
modified/added to allow for different properties on different sub-regions.

B.4 Boundary Conditions

Using interior or sub-regions in the manner described in this proposal leaves
open the problem of boundary conditions. In a mathematical sense there
are no interior boundaries when solving the resulting differential equations.
In practice this poses a problem for the modeling of reactions on the wall.
In the hollow cathode, for example, the secondary emission of electrons is an
important source of high energy electrons. On a side note, one is not really
interested in the solution in many of the sub-regions. One possible solution
is, therefore, to have secondary emissions of electrons in much of the sub-
region representing a part of the wall. This results in an electron density
and temperature which is unreasonably high in this section, but this is not
important if one is not interested in the solution in that section. Similar
problems arise with the reflection of heavy particles.
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