
Extending the capabilities of a plasma simulation

model

a case study of a hollow cathode discharge

B.H.P.Broks

August 20, 2002

ii

Summary

This work, which is the report of a one-year graduation project at the Eind-
hoven University of Technology, deals with the extension of a plasma simulation
code called PLASIMO, with the purpose of modeling high-power density plas-
mas.

The plasma simulation code PLASIMO has been the focus of the plasma
simulation efforts on the Eindhoven University of Technology for the last decade.
The present code is a model factory, capable of supporting models for a wide
variety of plasmas. In order to expand the capabilities of PLASIMO to the
simulation of high-power density plasmas, such as pinch plasmas or the plasma
used in Laser-Wakefield acceleration, various extensions to the code have been
made, which will be discussed here.

First, a 0-D model, based on the Disturbed Bilateral Relations (DBR), has
been made. This model is capable of simulating a fairly wide range of plasmas
with a low to moderate degree of ionization. The results of these simulation
can be used by PLASIMO as starting conditions for the iterative solver. A
code-to-code comparison between PLASIMO and the DBR model is described.

The principle of DBR can also be applied for the explanation of numerical re-
sults generated by PLASIMO. The results of a series of simulations that go from
a Non-Local Thermal Equilibrium to a Local Thermal Equilibrium situation will
be discussed with the DBR in mind.

Then, a module capable of calculating the Lorentz force and azimuthal mag-
netic field in an axisymmetric situation has been written. This Lorentz force
is the driving force behind pinching. While the module is capable of correctly
calculating the Lorentz force for a given current distribution, the weak cou-
pling between the pressure and Lorentz force in the flow solvers may present a
challenge for the simulation of pinch plasmas.

After a request from the industry, a case study of the decay of plasma in a
hollow cathode pseudospark discharge has been investigated. For this, it was
necessary to improve the treatment of diffusion in PLASIMO. The Fick law of
diffusion, which was used in PLASIMO, did not apply for this type of discharge
due to the low pressure. A module which augments Fick diffusion by taking into
account the limitations on the mean free path the vessel causes has been added.
This makes it possible to simulate plasmas that are between the continuum and

iii

iv SUMMARY

free molecular flow regime. Using this module, the effect of geometry on the
decay time of the hollow cathode discharge has been investigated.

Contents

Summary iii

1 Introduction 1
1.1 Outline of the project . 1
1.2 High power density plasmas . 1
1.3 PLASIMO . 2

1.3.1 The hollow cathode discharge 3
1.4 The contents of this report . 3

2 Introduction to HCDs 5
2.1 Introduction . 5
2.2 Hollow cathodes in EUV lithography 5
2.3 Design . 6

2.3.1 Gas considerations . 6
2.4 Operation . 7
2.5 Summary . 8

3 A brief tour of PLASIMO 9
3.1 Introduction . 9
3.2 Transport physics in PLASIMO 9

3.2.1 The φ-equation . 9
3.2.2 Examples of the φ-equation 10
3.2.3 The φ-equation in PLASIMO 10
3.2.4 Increasingly complex systems 11

3.3 Examples of PLASIMO models 13
3.3.1 Fluid Flow . 13
3.3.2 An Ar LTE plasma . 18

4 Creating a 0-D model using DBR 21
4.1 Introduction . 21
4.2 Disturbed Bilateral Relations . 22

4.2.1 The electron particle balance 22
4.2.2 The electron energy balance 24
4.2.3 The heavy particle energy balance 24

4.3 Using the DBR to analyze a plasma 25
4.3.1 An equation for kheat . 25
4.3.2 An equation for kion . 26
4.3.3 An equation for kcond . 26

v

vi CONTENTS

4.3.4 An equation for krec . 26
4.3.5 An equation for D∗ . 27
4.3.6 Conclusions . 27

4.4 The programF . 28
4.4.1 The input . 29
4.4.2 The calculation . 31
4.4.3 The output . 33

4.5 DBR and PLASIMO . 33
4.5.1 Predicting trends with the DBR program 34
4.5.2 Performance . 42

4.6 Scaling laws and DBR . 42
4.7 Conclusions . 45

5 From NLTE to LTE 47
5.1 Introduction . 47

5.1.1 Increasing The Power Density 47
5.1.2 Increasing Pressure . 49
5.1.3 Computational Speed . 51

5.2 Deviations between the LTE and NLTE approaches 51
5.2.1 The models . 52
5.2.2 The cause of the deviations between NLTE and LTE . . . 54
5.2.3 Conclusions . 57

6 Implementing pinching in PLASIMO 59
6.1 Introduction . 59

6.1.1 The Lorentz force in PLASIMO 59
6.1.2 The axisymmetric grid . 59

6.2 General theory . 60
6.2.1 The magnetic field . 60
6.2.2 The Lorentz force . 61

6.3 Implementation in the codeF . 62
6.3.1 Electromagnetism in PLASIMO 62
6.3.2 The implementation of the Lorentz force 63

6.4 Testing the code . 65
6.4.1 Validation against an analytical solution 66
6.4.2 Testing the Lorentz force for a cascaded arc 68

6.5 Conclusions . 70

7 Simulating plasma decay in an HCD 71
7.1 Introduction . 71

7.1.1 Diffusion . 71
7.1.2 Contents of this chapter 71

7.2 Theory . 72
7.2.1 Diffusion . 72
7.2.2 Knudsen flow . 73
7.2.3 The resistor model . 76
7.2.4 An analytical approach to the decay in the hollow cathode 77
7.2.5 Conclusion . 78

7.3 ImplementationF . 78
7.3.1 The design criteria . 78

CONTENTS vii

7.3.2 The code . 79
7.4 Validation . 80

7.4.1 Introduction . 80
7.4.2 A simple model for the decay in the hollow cathode discharge 80
7.4.3 Results of the validation 81
7.4.4 Conclusion . 83

7.5 The model used for the hollow cathode 83
7.5.1 The diffusion calculator 84
7.5.2 The boundary condition 84
7.5.3 The borehole . 85
7.5.4 The pressure in the hollow cathode 86
7.5.5 Using a free electron density 86

7.6 Varying the design parameters 87
7.6.1 Varying the size . 88
7.6.2 Varying the radius . 89

7.7 Conclusions . 90

8 Conclusions 93
8.1 Conclusions of chapter 3 . 93
8.2 Conclusions of chapter 4 . 93
8.3 Conclusions of chapter 5 . 93
8.4 Conclusions of chapter 6 . 93
8.5 Conclusions of chapter 7 . 94
8.6 General conclusions and recommendations 94

A Technology assessment 95

B The code of the DBR program 97
B.1 Header file . 97
B.2 Body file . 99

C The code of the pinching module 111
C.1 Header file . 111
C.2 Body file . 111

D The analytical model of the decay in the HCD 115

E The code of the plKnudsenDiffusion class 119

Bibliography 123

Acknowledgements 125

viii CONTENTS

Chapter 1

Introduction

1.1 Outline of the project

This thesis is the report of a one-year graduation project at the Eindhoven
University of Technology. The purpose of the project was to extend the pos-
sibilities of the PLASIMO modeling package so that it can be used to model
high-power high-density plasmas1.

1.2 High power density plasmas

High power density plasmas are the focus of much research nowadays. They
are for instance used in the laser-wakefield acceleration project (An introduction,
along with literature references, can be found in [2]), and there is a recent
industrial interest for hollow cathode pseudospark discharges for use as Extreme-
Ultra Violet (EUV) sources.

To handle this class of plasmas, the modeling toolkit should be able to handle
the following:

- Time-dependence. Many high power density plasmas are not stable. This
makes their behavior time-dependent. PLASIMO can handle time-dependent
models, as a study of the plasma in a hollow cathode discharge will show
(see chapter 7).

- Pinching. A module that can calculate the Lorentz force for a two-
dimensional geometry is discussed in this report (see chapter 6).

- The long mean free path in the hollow cathode discharge makes it nec-
essary to take into account free molecular flow and normal diffusion. A
module that can do this is created and discussed here. (see chapter 7).

- The plasma has a high electron density. This means that equilibrium
can be maintained fairly easily. However, the strong time dependence
introduces deviations from equilibrium. This makes it nescessary to be

1 It is assumed that the reader has a basic understanding of plasma physics; if this is not
the case, [1] can be a starting point to gain this understanding.

1

2 CHAPTER 1. INTRODUCTION

able to handle both plasmas that are close to equilibrium and plasmas
that are far from equilibrium. (see chapter 5)

1.3 PLASIMO

For the modeling, the PLASIMO (PLAsma SImulation MOdel) package has
been used. PLASIMO is a general-purpose modeling toolkit that has been the
center of the plasma modeling efforts on the Eindhoven University of Technology
for the last decade. Some PLASIMO features are:

• A modern object-oriented structure, written in C++

• A Graphical User Interface (GUI) that makes it easy to modify and create
models, even by unexperienced users

• An input file parser that can handle custom expressions and uses units.

• The code can be compiled on a variety of platforms, among which Win-
dows, Sillicon IRIX and Linux

Furthermore, the code is so general that new modules can easily be added.
This makes it possible to tackle problems that cannot be solved with PLASIMO
yet. Such new modules also extend PLASIMO, making it capable of handling
more problems. An addition by one user is in principle usable by all users.
Extendability and reusability are the key elements of the design philosophy.

During this project, three extensions for PLASIMO have been written, with
the purpose to make it possible to let PLASIMO handle high-power density
plasmas. These are:

- A program that uses Disturbed Bilateral Relations to make an approx-
imate calculation of various plasma parameters has been written. This
makes it possible to generate starting conditions for PLASIMO, thus fa-
cilitating the use of PLASIMO. PLASIMO, like any iterative model, needs
values to start the iterative procedure. If these values are not sufficiently
close to the actual solution, poor convergence or even divergence may
result.

- A plug-in that generalizes the calculation of the diffusion coefficient for
both high-pressure and low-pressure regimes, making it possible to cal-
culate diffusion coefficients in plasmas where the fact that the mean free
path of the particles is larger than the typical system dimensions makes
it impossible to use standard diffusion theory.

- A plug-in that calculates the Lorentz force, essential for the treatment of
pinch plasmas, has been written.

These extensions will be discussed in detail in this report.

1.4. THE CONTENTS OF THIS REPORT 3

1.3.1 The hollow cathode discharge

A case study on a special case of the hollow cathode discharge, the hollow
cathode discharge, has been carried out. In particular, the decay of the plasma
in the hollow cathode after the pinch has been studied. Also, the first steps
towards modeling the pinch are investigated.

1.4 The contents of this report

Chapter 2 gives a short introduction in the operation of the hollow cathode
discharge. This forms the basis of the further studies on the hollow cathode
discharge. In this chapter, the various stages in the operation of the hollow
cathode discharge will be identified. Two of these stages will be the subject of
further investigation.

In chapter 3, a general study of PLASIMO will be conducted. First, the
general transport equation, the so-called φ-equation [3], which lies at the heart
of PLASIMO, is discussed. Then, a case study is made from a few very simple
problems, as an example and as a validation of the code.

Chapter 4 deals with the creation, implementation and validation of a simple
0-D model plasma model, based on the method of Disturbed Bilateral Relation
[4]. The purpose of this model is to complement the complicated and sophis-
ticated PLASIMO modeling toolkit with a simple, crude model. This model
can also be highly useful for supplying reasonable estimates of key plasma pa-
rameters. As stated above, an iterative procedure, such as a PLASIMO model,
needs a reasonable estimate of these parameters to be able to find a converged
solution of the model.

Chapter 5 is a study of the consequences of going from a NLTE2 model to
an LTE3 model. The results will be discussed with the φ-equation and the
Disturbed Bilateral Relations in mind.

Chapter 6 deals with the implementation of a module that can calculate the
Lorentz force, a key step in modeling pinch plasmas, where the pinching force
is delivered by the Lorentz force. As will be shown, applying this module to the
hollow cathode discharge will require other modifications to the code as well.

Chapter 7 deals with the implementation of a new way of calculating the
diffusion coefficient. By taking into account both normal diffusion and Knudsen
flow, the diffusion coefficient can be calculated for much lower pressures than
if one would use only normal diffusion. This makes it possible to model the
decay of the plasma in the hollow cathode. Calculations on this decay have
been performed and are presented as well in that chapter.

Chapter 8 presents the conclusions of this work.

2Non Local Thermal Equilibrium: see chapter 3
3Local Thermal Equilibrium: see chapter 3

4 CHAPTER 1. INTRODUCTION

Some sections are marked with aF. In these sections, the program code is
discussed. While this may be very interesting for someone involved in numerics,
for others it may not be interesting, as no physics is discussed in these chapters.
They may be skipped without significantly interrupting the argument.

Chapter 2

Introduction to Hollow
Cathode Discharges

2.1 Introduction

Hollow cathode pseudospark discharges discharges have first been described in
the 1950’s. Then, the pseudospark discharge was an unwanted, and unexpected,
side effect. Nowadays, it is a device in which a lot of research effort is invested.
Applications include high-voltage switches and spectroscopy.

In this chapter, a new application of the hollow cathode will be discussed:
its potential use in EUV1 lithography, a necessary step in the production of
ever faster computers. The discussion will be focused on hollow cathode dis-
charges with properties that are typically used in the EUV research. In order
to understand the requirements the hollow cathode must satisfy, the role of the
hollow cathode in future-generation processor manufacturing processes will be
discussed in section 2.2. After this discussion, a schematic design of the hollow
cathode will be presented in section 2.3. Using this design, the operation of
the hollow cathode will be discussed in section 2.4. A short summary will be
presented in section 2.5.

2.2 Hollow cathodes in EUV lithography

As stated, hollow cathodes are being investigated as a source of EUV gener-
ation. A possible use of this radiation is water window microscopy. Here, the
focus will be on another application of EUV generation, namely EUV lithog-
raphy. Lithography is a key step in the production of computer chips. The
motivations for researching EUV lithography will be discussed in this section.

Without going into the details of lithography, it can be stated that a light
beam, that has gone trough a very complex optical system, is used to image
the structures on the chip. This starts to cause problems when the size of the
structures becomes significantly (about two to three times times) smaller than

1EUV stands for Extreme Ultra-Violet. This is a term for light in a band around 10 nm.

5

6 CHAPTER 2. INTRODUCTION TO HCDS

the wavelength of the used light. Nowadays2, the size of the structures on a
standard processor has decreased to 130 nm, and for other computer chips, such
as RAM, system logic, and graphics processors, this figure is in the same range.
Further reduction of the size of the structures, important for producing better
computer chips, will require light with a shorter wavelength.

When the wavelength drops to less than 150 nm, almost all materials have
a very high absorption. It is thus necessary to use mirrors. However, even
that becomes troublesome. A frequency window in which “good” (about 70%
reflectivity) mirrors are available is a frequency window at 13.4 nm. If this
window is to be used for lithography, a powerful light source, that can produce
up to 100 W in a narrow band near 13.4 nm, is required. The hollow cathode
discharge is a candidate for this light source.

The hollow cathode discharge works in a pulsed mode. The decay time of the
plasma after the pinch (see section 2.4) may be limiting the repetition frequency.
Minimizing the decay time is a way in which the repetition frequency, and thus
the power output, can be boosted. By creating a model that can predict the
decay time for given parameters, such as geometry, it will become possible to
determine the effect of a change in the geometry on the decay time, and thus
the repetition frequency and the output power.

2.3 Design

As stated in the introduction, there are many possible designs for a hollow
cathode discharge. For a more thorough explanation, one might look at [5, 6, 7],
An example is given in figure 2.1. Here, a schematic drawing of a hollow cathode
discharge is given. The cathode is generally a few centimeters wide and high.

2.3.1 Gas considerations

Various gasses can be used to operate the discharge, however, for EUV gener-
ation, three gasses are considered: xenon, lithium and tin. Each has advantages
and disadvantages, which will be discussed.

- Xenon: Strongly ionized xenon (Xe8+ to Xe14+) can emit light in a band
around 13 nm. However, the fraction of the light emitted in this band is
rather low. It has, however, technological advantages, in particular the
fact that it is a noble gas. This means, that it does not react easily with
surfaces, and will not damage the mirrors as much. Sputtering and ion
implantation can still damage the mirrors, though.

- Lithium: Li2+ can also emit light in the 13 nm region. It is more efficient
than xenon, but has the unfortunate disadvantage of being extremely re-
active. Therefore, it is a technological challenge to prevent the discharge
from emitting large quantities of lithium. Lithium would cause damage
to mirrors if it comes into contact with them, because of deposition and
surface reactions.

2August 2002

2.4. OPERATION 7

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �
� �
	 	
	 	

Gas inlet

Isolator

Trigger electrode

Metal

Pinch

Cathode

Anode

Borehole

Figure 2.1: A schematic drawing of a cross section of the hollow cathode design.
it has a cylindrical symmetry. The device is a few centimers in diameter. The
actual geometry is varied to obtain an optimal design.

- Tin: Tin also is more efficient than xenon, but is also not chemically inert.

2.4 Operation

The hollow cathode does not operate in a steady-state mode, but rather in a
continuing cycle. At the beginning of the cycle, the anode plate is at a voltage
that is much higher than the cathode plate (a few kV). The trigger electrode is at
a potential that is a few hundreds of volts higher than the cathode. This means,
that electrons are rapidly drawn to the cathode, and this means that there are
too few electrons to initiate the discharge. The trigger electrode functions as an
inhibitor.

When the trigger potential is removed, the free electrons will not be removed
anymore. Then, a Townsend avalanche will start. The electrons produced in
this way get absorbed by the anode. Furthermore, the ions will get drawn to the
cathode, where they produce electrons through secondary emission. This will
produce secondary electrons, that will cause some ionizations in the cathode.
The ionization rate is low in this stage, because the mean free path of the
electons is larger than the cathode dimensions. The electrons will be rapidly
leaving the more massive ions behind. This causes a positive space charge to
form near the borehole. This causes the anode potential to penetrate into the
hollow cathode. A virtual anode forms into the hollow cathode. This causes the

8 CHAPTER 2. INTRODUCTION TO HCDS

largest part of the potential drop to occur in a small region near the cathode
wall. This creates an electric field that traps the electrons.

The trapped electrons will start to move around in the cathode, ionizing
neutral atoms. High-energy electrons, which have a low ionization cross section,
do not cause much ionization. The reflections in the sheath causing the so-
called pendulum effect, are needed to produce high levels of ionization. The
electron density rapidly rises, while the plasma conductivity rapidly increases.
This causes a very large (kA range) current to flow from the hollow cathode
to the anode. Such a massive current trough a small borehole will cause the
Lorentz force to significantly influence the movement of the electrons. This will
cause the current to contract, further increasing the Lorentz force, creating a
pinch plasma. This pinch has such a high energy dissipation density, that the
particles in it can be strongly ionized. Some gasses, like the aforementioned
lithium, tin and xenon, can emit light in the EUV range.

During the pinch, a lot of current is drawn. The voltage difference between
cathode and anode, which is sustained by a capacitor, gets smaller as the ca-
pacitor is drained of charge. The pinch is not stable, and cannot be sustained
in steady state. The pinch will stop, and the voltage difference between anode
and cathode will be small. After that, the cathode is still filled with electrons
and ions. This plasma must decay before the next shot. Because there is no
energy source, the diffusion losses will not be replenished, and the plasma will
decay. Applying a positive voltage to the trigger electrode may accelerate this
effect. When the plasma has decayed sufficiently3, one can start recharging for
the next shot.

2.5 Summary

In this chapter, a global overview of the design and operation of a hollow
cathode pseudospark discharge has been given. The discussion has been focused
on a particular use of the hollow cathode discharge, namely its potential use as
a high-power EUV source. A more detailed discussion, using a model with
realistic parameters, will be discussed in the following chapters.

It is an objective to be able to simulate all the stages of the hollow cathode
discharge. PLASIMO was chosen as the modeling toolkit to use for this project.
Not only does PLASIMO already have much of the physics on board, it can also
create models that are easily adapted. This means, that only the physics that are
important during a certain stage need to be incorporated. Also, the user-friendly
GUI and sophisticated output make it attractive to use PLASIMO. While not
all the physics necessary to simulate the hollow cathode is in PLASIMO, its
easy extensibility makes it possible to incorporate the missing physics. Indeed,
a large part of this report discusses the creation of new modules that describe
physics necessary to create a realistic model of the hollow cathode discharge,
such as pinching (Chapter 6) and Knudsen flow (Chapter 7).

3If there are too many electrons, the plasma will break down before the voltage is high
enough.

Chapter 3

A brief tour of PLASIMO

3.1 Introduction

PLASIMO is a general toolkit that can be used to generate models of plasmas
[8, 9, 10]. In this chapter, a general overview of the implementation of the
physics in PLASIMO will be given, followed by a demonstration of PLASIMO
calculations on a few simple systems. Central in this discussion is the canonical
transport equation, usually denoted by φ-equation.

3.2 Transport physics in PLASIMO

In fluid mechanics, or in a plasma, which is by definition a non-equilibrium
system, transport is of paramount importance. The important role of transport
in a plasma is respected in PLASIMO by representing physical quantities as
special cases of a general conservation equation, in which transport plays a key
role: the φ-equation. With this approach, we use the fact that the transport of
different variables can be described in a similar fashion.

3.2.1 The φ-equation

Patankar [3] defines the φ-equation as:

∂ρφ

∂t
+ ~∇ · (ρ~vφ) = ~∇ · (Γ~∇φ) + S (3.1)

Here, S is the source term, ρ the density, Γ a generalized diffusion coefficient, ~v
the velocity, and φ is a specific1 physical property, for which conservation laws
apply. Specific physical properties are represented in this way in PLASIMO.
Basically, the φ-equation is nothing more than a general conservation equation.

PLASIMO uses the control volume method to discretize the equation. In this
method, the equation is discretized on a mesh of control volumes. For one such
volume, the integral conservation laws are exactly2 satisfied, even for a coarse

1per mass unit
2In practice, up to machine precision

9

10 CHAPTER 3. A BRIEF TOUR OF PLASIMO

grid. As the complexity of the problem often makes it necessary to use fairly
coarse grids3, this is an important feature. In a control volume, the values of
φ are stored in the nodal points. These are points which generally lie at the
center of the control volumes. The value of the φ in the nodal point is assumed
to be valid troughout the control volume. Note that the φ-equation in this
form implicitly assumes a fluid4; a way to also treat some non-fluid systems is
discussed in chapter 7. The φ-related transport (the convection and diffusion
terms) are dealt with at the control volume boundaries.

3.2.2 Examples of the φ-equation

In this section, various examples of the use of the general φ-variable to rep-
resent physical properties will be given. As examples, the specific momentum
(momentum per mass unit) and enthalpy will be discussed.

The specific momentum equation

The momentum equation in the x-direction is given by [9]:

∂ρvx
∂t

+ ~∇ · (ρ~vvx) = ~∇ · (µ~∇v) + Fx (3.2)

Here, vx is the speed in the x-direction, µ is the viscosity and F are forces.
Comparing this with (3.1), the φ can be identified with vx, Γ with µ and S with
Fx. The other velocities can be treated similarly.

The enthalpy equation

In this example, a simplified enthalpy equation [3] for ideal gases will be
discussed.

∂ρh

∂t
+ ~∇ · (ρ~vh) = ~∇ · (k

c
~∇h) + Sh (3.3)

Here, h is the specific enthalpy, k the thermal conductivity, c is the constant-
pressure specific heat and Sh is the volumetric rate of heat generation. Com-
paring this with (3.1), the φ can be identified with h, Γ with k

c and S with
Sh.

3.2.3 The φ-equation in PLASIMO

In PLASIMO, a physical property is represented with a φ when this is ap-
propriate. Depending on the properties of the plasma under study which are
implemented in the model, PLASIMO generates different sets of φ-equations
to represent them. These are subsequently solved iteratively, until a converged
solution is obtained. Different problems require different sets of φ-equations. It
is the task of PLASIMO to to assist the developer to assemble the appropriate
set of φ-equations, and to solve the set of differential equations.

340 grid points in each dimension is typical
4This means, that the dimensions of the system are small compared to the mean free path

of the molecules

3.2. TRANSPORT PHYSICS IN PLASIMO 11

3.2.4 Increasingly complex systems

In this sections, we will deal with a number of increasingly difficult problems
and the corresponding larger set of φ-equations. Starting from a simple heat
transport problem, restrictions will be released until the almost totally free Non-
Local Thermal Equilibrium (NLTE) plasma is reached. The most important
φ-equations that describe the model are discussed.

Heat conductivity

The heat transfer problem in a stationary medium of uniform density can be
described by a simplified version of equation (3.3), noting that

~∇h = c~∇T (3.4)

With (3.4) and the other assumptions, (3.3) becomes

~∇(k~∇T) + Sh = 0 (3.5)

This equation describes heat transport. This equation, or its more general form
(3.3), are often part of more complex calculations. Note that specific enthalpy
is a specific quantity, while the temperature is not. This equation can be used
to describe the heat transfer in an uniform bar.

Fluid flow

In this example, a constant-density (low Mach number) fluid flow is treated.
The problem is described by the mass conservation equation and the momentum
conservation equations. The mass conservation equation is given by

~∇ · (ρ~v) = 0 (3.6)

The momentum conservation equation for each direction is given by (3.2). In
this equation, the forces term Fx can be rewritten, and the equation becomes:

∂ρvx
∂t

+ ~∇ · (ρ~vvx) = ~∇ · (D~∇v)− ∂p

∂x
+Bx (3.7)

with p the pressure and Bx the other forces. This formulation makes the im-
portant role of the pressure gradient explicit.

PLASIMO currently uses the SIMPLE algorithm [3] to solve these equations5

and obtain the pressure and the flow field. The SIMPLE algorithm basically
works like this [9]:

• From the initial guess of the pressure field the velocities are calculated
using equation (3.7)

• This velocity field will generally not satisfy (3.6). This equation is used
to obtain a correction for the velocity and pressure fields. The equation
is rewritten as a pressure-correction equation, which is treated as a φ-
equation

5It is planned to add the more general and more robust SIMPLER algorithm [11] as a flow
solver

12 CHAPTER 3. A BRIEF TOUR OF PLASIMO

• If present, other φ-equations are solved, and if necessary, transport coeffi-
cients such as the diffusion coefficient are updated.

• This procedure is repeated until convergence is achieved.

A very simple variety of this problem is a fluid with constant values of µ and
ρ. The energy equation is not solved; the only φ-equations are the momentum
equation (3.7) and the continuity equation (3.6).

A LTE plasma

The abbreviation LTE stands for Local Thermal Equilibrium [12], meaning
that all the species in the plasma have (approximately) the same temperature,
and that the chemical processes which create and destroy particles are so fast
that the densities of species can be given by analytical relations, based on the
standard laws of statistical mechanics. Apart from these relations, the plasma
is described by a set of φ-equations consisting of the energy equation (3.5), the
momentum equation (3.7) and the continuity equation (3.6).

In an LTE plasma, there is much more freedom than in a classical fluid.
The chemical processes may produce a very wide variety of particles, each with
different transport properties. This composition generally depends nonlinearly
on temperature; thus, it is necessary to take into account the energy equation
to calculate the temperature. This also means that the density is not uniform,
as the chemical composition is temperature-dependent and the temperature is
generally not uniform due to contact with the wall.

What makes this problem particularly challenging is that various φ-equations
may influence each other. For instance, the temperature may influence the com-
position, which influences the density distribution, which influences the velocity
field. However, the velocity influences the energy transport, which influences
the temperature, closing the circle. The strong influence of the φ-equations on
each other and the general nonlinearity of the dependencies make it necessary
to use an iterative procedure to solve the φ-equations.

A NLTE plasma

In many plasmas, the assumption that the energy transfer between species
keeps them at the same temperature is not valid. In PLASIMO, we restrict
ourselves to a single electron temperature and a single heavy particle tempera-
ture. These two temperatures are most likely to differ significantly because the
energy transfer between heavy particles and electrons is relatively inefficient,
due to the large difference in mass. This means that instead of one φ-equation,
we now need two φ-equations for the temperature. In the NLTE approach in
PLASIMO, there is in fact always a temperature difference between heavy par-
ticles and electrons. This is because only the electrons receive the power that
sustains the plasma. Because the energy transfer from the electrons to the heavy
particles requires a temperature difference, the electrons will always be hotter
in this approach6.

6This is not a fundamental restriction, and if necessary, it is certainly possible to also
couple power into the ions

3.3. EXAMPLES OF PLASIMO MODELS 13

The chemical reactions may also not be frequent enough to compensate for
other loss and creation processes of particles, thus making it impossible to use
the analytical expressions to determine the composition. Chapter 4 deals with
this in depth. In this case, the transport for the individual species becomes
important. This means, that the for each species, the creation and destruction
of this species by chemical processes has to be taken into account, and that the
transport also has to be described. This transport is described by a φ-equation.
This greatly increases the number of equations.

3.3 Examples of PLASIMO models

It is one of the aims of this study to test PLASIMO with a series of models
with increasing complexity. First, simple fluid flows will be studied. A model
of a duct flow and a model of pipe flow will be created, executed, and the
results will be compared with the analytical solutions. After this, an argon LTE
plasma, which has more degrees of freedom, will be studied. A study of the even
more complex Ar NLTE plasma will be postponed until chapter 5, in order to
first introduce the reader to the theory about Disturbed Bilateral Relations in
chapter 4, which will facilitate the understanding of the results.

3.3.1 Fluid Flow

It is possible to consider fluids as special plasmas, namely those in which the
ionization degree is zero, the chemical composition is constant and the transport
properties are constant. PLASIMO is indeed able to simulate these “plasmas”.
In this section, three different flows will be discussed: a simple duct flow, a
simple pipe flow and a barometric flow. In all of these simulations, the fluid
simulated is water with its viscosity ν at room temperature of 10−3 Pa s [13]
and its density ρ of 1000 kg m−3. Furthermore, there is a no-slip condition at
the wall, meaning that ~vwall = ~0.

While PLASIMO uses generalized coordinates, presently only 2D coordinates
are used. The generalized coordinate system means, that it is possible to use
many different 2D systems, such as cartesian and cylinder-symmetric systems.
With relatively little effort, other 2D coordinate systems can be added. Even
1D and 3D coordinate systems can be used while maintaining large parts of the
code. This study will be restricted to straight cartesian and cylindrical grids, to
make it possible to compare the results with the results on an analytical model.

Duct Flow

PLASIMO has been used to create a model that simulates simple duct flows.
The simulated problem is the classical Poiseuille problem, presented in Figure
3.1. Because turbulence is not yet implemented in PLASIMO, only viscous flows
will be investigated. The following key parameters were used for this simulation:

- The piece of duct is 2D. It is assumed that for all variables, the derivative
in the x-direction is 0.

14 CHAPTER 3. A BRIEF TOUR OF PLASIMO

- A piece of duct with a length Lz of 1 meter and a height Ly of 1 meter is
simulated.

- The upper (y= 1 m) and lower (y= 0 m) boundaries are walls, meaning
that ~v(z, 0) = ~v(z, Ly) = ~0. This is the no-slip condition.

- The pressure gradient is -0.001 Pa m−1 in the z-direction. There is no
pressure gradient in the y-direction

- The left (z=0 m) and right (z=1 m) boundaries are open and are chosen
in a way that this piece of duct can be considered as a part of a very long
duct, in which the flow is totally developed.

Running a model with these parameters yield the velocity profile for vz of
figure 3.2. vy turns out to be 0.

For this problem, the exact analytical solution exist. The problem is described
by the following differential equations:

∂vz
∂z

= 0 (3.8)

∂p

∂z
= ν

∂2vz
∂y2

(3.9)

vz|y=0 = vz|y=1 = 0 (3.10)

Equation (3.8) is the mass conservation law, with vz the speed in the z-
direction. Equation (3.9) is the equation of momentum conservation in the z-
direction, with p the pressure. Equation (3.10) defines the boundary conditions

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

y

z 1 m

O

1 m

Figure 3.1: A sketch of the computational domain of the duct flow problem,
with a sketch of a fully developed Hagen-Poiseuille flow profile. The flow is
assumed to be uniform in the x-direction, which is perpendicular to the page.

3.3. EXAMPLES OF PLASIMO MODELS 15

0 0.2 0.4 0.6 0.8 1
y [m]

0

5e-05

0.0001

0.00015

v z [
m

/s
]

Simulation
Theoretical solution

Figure 3.2: The velocity profile of the duct flow.

at the south boundary z = 0 and the north boundary z = 1. The solution of
this set of equations is a parabolic profile, given by:

vz(y, z) =
∂p

∂z

(0− Ly)2

8ν

(
1−

(
2y − 0− Ly

0− Ly

)2)
(3.11)

for 0 < x < 1. Equation (3.11) is also plotted in Figure 3.2, with appropriate
numerical values substituted. Figure 3.2 compares (3.11) with the numerical
results. The theoretical and simulated curves match excellently. The model
converges in about 2600 iterations to a residual of 1·10−11.

Pipe flow

PLASIMO has been used to model the flow of a fluid in a pipe. The problem
is quite similar to the duct flow problem described in section 3.3.1: the only
differences are the cylindrical geometry and the different pressure gradient. The
duct is replaced by a tube that has a radius r of 0.01 m and a length Lz of 1 m.
The pressure gradient is -0.01 Pa m−1. Water is used, with a viscosity of 10−3

Pa s [13]. The results are given in figure 3.3.

It is also possible to give an exact, analytical solution for this flow problem.
The equations that describe the system are:

∂rvz
∂z

= 0 (3.12)

∂p

∂z
= ν

1
r

∂

∂r

(
r
∂vz
∂r

)
(3.13)

∂vz
∂r
|r=0 = 0; vz|r=0.01 = 0 (3.14)

16 CHAPTER 3. A BRIEF TOUR OF PLASIMO

0 0.002 0.004 0.006 0.008 0.01
r [m]

0

5e-05

0.0001

0.00015

0.0002

0.00025
v z [

m
/s

]
Simulation
Theoretical solution

Figure 3.3: The velocity profile of the pipe flow

These equations can be solved analytically, giving a parabolic velocity profile.
This analytical solution is given in figure 3.3; it matches the simulated solution
very well. The model converges in 516 iterations to a residual of 1·10−11.

Barometric Flow

PLASIMO is able to simulate the effects of gravity. This ability will be
investigated on a duct flow problem similar to the problem presented in section
3.3.1.

The simulated fluid is water. The flow is driven by gravity and not by a
pressure gradient as in the preceding examples. The gravitational acceleration
g is 9.81 m s−2. The duct has to be much smaller in this case to make sure that
the flow is not turbulent. Therefore a width of 1 mm is selected. The solution
of this problem, calculated with PLASIMO, can be found in figure 3.4.

The analytical solution can be calculated from the differential equations that
describe the problem. These are equation (3.8), equation (3.10) and equation
(3.15):

−g = ν
∂2vz
∂y2

(3.15)

The solution of this equation, a parabolic profile, matches with the PLASIMO
result of figure 3.4.

3.3. EXAMPLES OF PLASIMO MODELS 17

0 0.0002 0.0004 0.0006 0.0008 0.001
y [m]

0

0.5

1

1.5

v z [
m

/s
]

Figure 3.4: The velocity profile of the barometric duct flow.

Concluding remark

The astute reader will have noticed that the velocities in figure 3.2 and 3.3
are low. These PLASIMO models failed to converge for systems settings that
had higher velocities. The cause is thought to lie in the value of the Reynolds
number Re. This is defined by

Re =
vL

ν
(3.16)

with L the typical length scale of the problem. When this number comes above
2300, the fluid stops being laminar, but becomes turbulent, and the Navier-
Stokes equations, in the form used by the flow solver in PLASIMO, no longer
apply. For the flow problems in section 3.3.1 and 3.3.1, Re equals 1000. This
means, that the system is close to the transition from laminar to turbulent.
Thus, the fact that PLASIMO apparently cannot handle these high Reynolds
number problems is not a big restriction, as the results would be inaccurate
anyway, due to the inapplicability of the set of equations used to describe the
problem. In the future, a k − ε model may be added, which extends the flow
code in a way that makes it capable of handling turbulent flows. Such a model
can also be described with the φ-equation method.

It is worth noting that not all PLASIMO models have problems for this range
of Reynolds numbers. Models where instead of the inlet pressure and outlet
pressure the inlet flow and outlet pressure are specified converge much better.
It is thought that the lack of numerical ”freedom” in the former case negatively
impacts the stability.

18 CHAPTER 3. A BRIEF TOUR OF PLASIMO

3.3.2 An Ar LTE plasma

The previous examples dealt with simple fluids. This means, that in contrast
to plasma the degree of ionization us zero, while the chemical composition is uni-
form. Other chemical reactions also influence the plasma composition. In LTE,
however, transitions are balanced by their inverse process. Radiation is free to
escape, but this transport phenomenon does not disturb the forward-backward
balances significantly. This means, that the temperature of all species is equal,
and that the composition is ruled by equilibrium relations, such as the Saha
relation (3.17) for ionization and the Guldberg-Waage equation for dissociation.
These relations reduce the number of degrees of freedom considerably.

The case of NLTE has a virtually unlimited number of degrees of freedom.
However, departure from LTE moves along stages. For instance, thermal equi-
librium, which means that the electrons and heavy particles have the same tem-
perature, may be maintained, while the chemical equilibrium, which means that
the degree of ionization and dissociation obey the Saha and Guldberg-Waage
equation, may not be maintained [12].

In practice, there are always small disturbances to this picture. However,
when these disturbances does not significantly influence the state densities, LTE
can be a good and relatively simple approximation. Chapter 4 deals with these
disturbances in detail.

As stated, LTE plasmas have more degrees of freedom than fluids, but less
than NLTE plasmas. PLASIMO can be instructed to use different solving tech-
niques for simple fluid flows, LTE plasmas and NLTE plasmas. This enables
PLASIMO to ignore irrelevant degrees of freedom, which would cost computing
time and may even cause a failure to converge. Chapter 5 deals with this in
detail.

The plasma under investigation here is a segment of a non-flowing Ar plasma.
Only the ground state and the ion state are taken into account. This over-
simplification is made because the purpose of this investigation is a study of
PLASIMOs behavior and not that of Ar plasmas. The segment has a radius of
0.25 m and a length of 0.1 m. This gives the plasma a volume of 0.020 m−3.
The wall is kept at 300 K. This provides the cooling. Radiation is not taken into
account. A power of 5000 W is coupled into the vessel by an uniform electric
field in the z-direction, which results in a power density of 2.5·106 Wm−3 The
amount of Ar is set by filling it with 1000 Pa Ar at 273K. This gives an initial
neutral density of 2.65·1023 m−3. The total number of Ar atoms is thus 5.3·1021.
The pressure at plasma conditions is about 0.3 bar. The electron density ne as
predicted by PLASIMO is compared in figure 3.5, with the value of ne calculated
with the Saha equation:

np =
neni
2g

(
h2

2πmekbT

) 3
2

exp
(
E

kbT

)
(3.17)

Here, np is the neutral density, ni the electron density, g the degeneracy of
the ion state, h Planck’s constant, me the electron mass, kb Boltzmann’s con-

3.3. EXAMPLES OF PLASIMO MODELS 19

0 0.05 0.1 0.15 0.2 0.25
r[m]

0

2e+21

4e+21

6e+21

8e+21

1e+22

n
[m

-3
]

n
e

Saha n
e

Figure 3.5: The electron density of the Ar plasma, calculated with the LTE
module. It is compared with the Saha density of the electrons, that has been
derived from the temperature and neutral density calculated by PLASIMO.

stant, and E the energy level of the ion state. The temperature profile of this
simulation can be found in figure 3.6.

The temperature profile has a maximum at about 16000K and decreases
rather sharply near the wall. ne is close to the Saha density, which is not
surprising, because PLASIMO uses the Saha formula to calculate the electron
density. Note that the ionization is small near the wall. This means that the
heat conductivity of the electrons becomes very small. This causes a significant
drop in the overall heat conductivity. Thus, it requires a larger temperature
gradient to transport the heat to the wall.

The low electron density is caused by a low temperature. In a NLTE plasma,
the electron temperature could drop less steeply near the wall than the heavy
particle temperature. This higher electron temperature could keep the ioniza-
tion higher. By using the LTE module, this is made impossible. Therefore, the
results of the LTE calculation are not correct near the wall. This may influ-
ence the results in other parts of the plasma. This can be investigated by using
non-LTE models, which will be discussed in chapter 5.

20 CHAPTER 3. A BRIEF TOUR OF PLASIMO

0 0.05 0.1 0.15 0.2 0.25
r[m]

0

5000

10000

15000

20000

T
[K

]

Figure 3.6: The temperature profiles of an Ar plasma, calculated with the LTE
module.

Chapter 4

Creating a 0-D model using
Disturbed Bilateral
Relations

4.1 Introduction

In order to start an iterative model, such as a PLASIMO model, one generally
needs a starting condition. Usually, the closer the starting condition resembles
the results of the calculation, the better, as the calculation will need less iter-
ations to find a self-consistent solution. Failure to provide a starting condition
that is sufficiently close to the results will cause slower, more irregular conver-
gence and may even result in divergence. For this reason, a program has been
written that can approximate the electron density ne, the neutral density na,
the electron temperature Te, the heavy particle temperature Th and the pres-
sure p for a given power, heavy particle density n, geometry and physical and
chemical properties of the main plasma constituent1. The latter are used to
determine the transport coefficients using constitutive equations. This approx-
imate calculation is based on 3 conservation equations: the electron particle
balance, the electron energy balance and the heavy particle energy balance. It
is very important to note that it is not accuracy, but stability and versatility
that are the main design parameters. The model will, however, be restricted to
atomic plasmas, and single-ionized ions. These limitations are not fundamental,
and it is possible to lift them in the future.

The usefulness of the 0-D program, however, is not limited to a start-up
module of PLASIMO. As it contains much fundamental plasma physics, it can
be used to predict certain scaling laws, the relative importance of various energy
loss processes, equilibrium validity criteria and stability criteria of plasmas. The
approach is based on the concept of Disturbed Bilateral Relations and will
therefore be named as such.

1The atomic mass, rate coefficient for ionization, temperature exponent in the Arrhenius
equation, energy level of the ion ground state, degeneracy of the ion ground state, and the
cross sections for hard-sphere, ion-neutral and ion-electron collision

21

22 CHAPTER 4. CREATING A 0-D MODEL USING DBR

4.2 Disturbed Bilateral Relations

The method of Disturbed Bilateral Relations (DBR) is thoroughly explained
in [4]. A thorough explanation is beyond the scope of this study. A brief expla-
nation is offered below. In this report, we use three of them:the electron particle
balance, the electron energy balance and the heavy particle energy balance.

In literature, global models can be found that are similiar to the one presented
here; Lieberman [14] decribes a model that is suitable for systems that are far
from equilibrium. In these models, only the transport (the improper term) and
not the inverse process (the proper term) are taken into account. In our model,
the proper terms are taken into account too. While the DBR model is designed
for systems that are far from equilibrium, it thus can also be used for systems
that come close to LTE. It can be used to explore the road from NLTE to LTE.

The reason for the interest in plasmas that are far from equilibrium is that
plasmas are created to get something out of them, usually light or particles. This
implies that transport is an important aspect. But transport causes deviation
from equilibrium. However, for a steady state, this means that there has to
be input. On the other hand, as the reaction(s) that process the input to the
desired output always have inverse processes, there are also processes which
restore equilibrium. A way of looking at a plasma is considering it a set of
disturbed bilateral relations between states or energy levels, where transport
and equilibrium compete. A very schematic picture is in figure 4.1 For some
states, the transport is dominant, and their densities are determined by it. For
others, the transport is small, and they are in equilibrium. This can be described
by

P − φD = Tφ (4.1)

Here, T represents transport, P represents production and D destruction.

Disturbed Bilateral Relations can be used to determine which states can be
described by equilibrium relations, for instance which species have the same
kinetic temperature and which energy levels are populated according to the
Saha equation. Here, it will be used to find scaling laws and starting conditions.
This will yield a useful tool to characterize plasmas.

4.2.1 The electron particle balance

The electron particle balance is a balance that equates the production and
the loss of electrons. In a simple form it reads

npnekion − n3
ekrec =

neD
∗

npΛ2
(4.2)

with kion the ionization rate coefficient and krec the three-particle recombination
rate and D∗ is equal to Dnp, with D the normal diffusion coefficient. The
diffusion length Λ is usually given by half of the smallest dimension of the
plasma. For instance, in a typical TL tube, the diffusion length should be equal
to half the diameter of the tube. Recombination, the second term in (4.2), is the
proper ”loss” channel, as it is the inverse process of ionization, the first term in

4.2. DISTURBED BILATERAL RELATIONS 23

Figure 4.1: A schematic overview of a disturbed bilateral relation. The solid
arrows represent the equilibrium processes, while the dashed arrows refer to the
transport induced disturbances.

(4.2), while the spatial transport term, the third term in (4.2), is a disturbance.
Note the similarity with (4.1).

In equation (4.2) it is assumed that the only production process is ionization
of neutrals by electrons. This is a temperature dependent process, because the
kion is generally strongly temperature dependent2. This process is balanced by
the loss processes.

Equation (4.2) applies to the central plasma. However, there is a close con-
nection with the outer plasma region, more specifically the wall, where recombi-
nation takes place. Because of this, a concentration gradient exists. This causes
diffusion of electron an ion pairs from the central plasma to the wall. This effect
is especially important in relatively small plasmas that are not very dense. In
these plasma, Te is largely determined by the condition that it must be high
enough to provide sufficient ionization in order to compensate for the diffusion
losses, otherwise, the plasma would extinguish.

The second loss process, three-particle recombination, is usually insignificant
unless the electron density gets very large (typically above 1021 m−3). If three-
particle recombination becomes strongly dominant over diffusion losses, Saha
equilibrium is established.

Equation (4.2) is a good example of a Disturbed Bilateral Relation.The proper
balance would be

npnekion − n3
ekrec = 0 (4.3)

because ionization and three-particle recombination are each others inverse pro-
cesses. The balance (4.2) is called “Disturbed” because there is an extra loss

2For instance, the common Arrhenius-like reaction rate has superexponential dependence
of reaction rate on temperature (4.11)

24 CHAPTER 4. CREATING A 0-D MODEL USING DBR

term. This loss term is the diffusion (a transport term), and it is quite often
dominant. (In the solution procedure, it is indeed assumed that diffusion is
dominant, and that the three-particle recombination is a small correction).

4.2.2 The electron energy balance

The electron energy balance equates the heating to the cooling of the electrons.
It is given by equation (4.4).

ε = nenpkheat(Te − Th) + (npnekion − n3
ekrec)Eion (4.4)

In this equation, ε is the power density, kheat the heat transfer coefficient be-
tween electrons and heavy particles and Eion the ionization energy of an atom.
The power density ε is essential to sustain the plasma; without a power supply,
conduction and diffusion will remove the heat necessary for ionization, thereby
turning the plasma into a non-ionized gas. The terms on the right-hand side are
proper balances; the term on the left-hand side can be seen as a disturbance to
that. Often, the diffusion losses represent the most imortant loss process. This
can be made explicit by rewriting (4.4) using (4.2) to

nenpkheat(Te − Th) = ε− neD
∗

npΛ2
Eion (4.5)

The heavy particles get heated by elastic collisions with the hotter electrons.
In each collision, the electron loses a small portion of its energy to the heavy
particle. This represents a loss term for the electron energy.

When a particle recombines at the wall, it takes energy from the plasma with
it. The majority of the energy is chemical: the ionization energy of the gas. In
fact, also the thermal energy of the electron and of the ion are lost; these are,
however, generally small and not taken into account. Radiation losses, such as
radiative decay, are not taken into account, either.

Equation (4.5) assumes that all the energy is coupled into the electrons. Also,
heat conduction by the electrons is not taken into account. This may lead to
substantial errors if the ionization degree becomes large (larger than approx-
imately 1%). A correct treatment of this effect is beyond the scope of this
project, because it would require knowledge of the electron wall temperature,
which is generally not known unless the profile of the electron temperature is
calculated. More on the complexities of the electron heat conductivity can be
found in chapter 5.

4.2.3 The heavy particle energy balance

The heavy particle energy balance equates the heating of the heavy particles
to the conductive energy loss.

nenpkheat(Te − Th) = kcond
Th − Twall

Λ2
(4.6)

Here, kcond is the heat conduction coefficient of the heavy particles. Twall is the
wall temperature of the heavy particles. The left-hand side term represents the

4.3. USING THE DBR TO ANALYZE A PLASMA 25

energy gained in collisions with electrons, and is identical to the second term of
equation (4.5). It is assumed that this is the only heating process. The heavy
particles lose their energy through conduction. This effect is described by the
second term.

4.3 Using the DBR to analyze a plasma

The DBR provide us with a set of equations that describe the plasma. If these
equations are solved for known input parameters, a prediction can be made
about the main plasma parameters temperature, pressure and composition of
the plasma. We assume that the power, the geometry, Λ, the main plasma
constituent and the heavy particle density n are known. This serves as input.
Furthermore, a cylindrical geometry is assumed. The power and geometry are
used to calculate ε.

This yields a total of 8 unknowns, 3 plasma variables and 5 parameters, with
only 3 equations. As can be seen in equations (4.2), (4.5) and (4.6), there are
5 other variables that are generally not known beforehand: kheat, kion, kcond,
krec and D∗. These variables all depend on Te, Th or both, and on the physcal
and chemical chemical properties of the main plasma constituent. In order to
solve this problem, we need to find equations for these variables in terms of Te,
Th and these parameters. Until now, argon is simulated; however, any gas can
in principle be dealt with.

4.3.1 An equation for kheat

The second term in equation (4.5) describes the heat transfer between elec-
trons and heavy particles. When an electron and a heavy particle collide elas-
tically, the electron and heavy particle exchange energy and momentum. This
exchange is not very efficient, because of the large difference in mass between
heavy particles and electrons. In the model, only the electron/neutral collisions
are taken into account. This is a good approximation for plasmas with a low
(less than 1% for Ar) degree of ionization. For higher degrees of ionization, the
more efficient electron/collisions become important.

The amount of heat transferred per second is basically the average amount
of thermal energy per collision ∆E transferred times the number of collisions of
atoms and electrons per second ν. The amount of heat transferred per collision
is given by [1]:

∆E =
3me

M
kB(Te − Th) (4.7)

with M the heavy particle mass, me the electron mass and kB the Boltzmann
constant. The collision frequency per cubic meter is given by

ν = nenpσea

√
8kBTe
πme

(4.8)

26 CHAPTER 4. CREATING A 0-D MODEL USING DBR

with σea the collision cross section between electrons and neutrals. This cross
section is generally a function of Te. We can now write an expression for kheat.

nenpσea

√
8kBTe
πme

3me

M
kB(Te − Th) = nenp(Te − Th)kheat (4.9)

Using this, we obtain

kheat = σea

√
8kBTe
πme

3me

M
kB (4.10)

This leaves us with a definition of kheat that depends only on Te. It can be
calculated if Te is known.

4.3.2 An equation for kion

The ionization reaction rate kion is approximated by an Arrhenius form in
the program. It has the general form of equation (4.11):

kion = krateT
q
e exp

(
−Eion
kBTe

)
(4.11)

The input parameters are the rate constant krate, the ionization energy Eion and
the temperature exponent q. These are properties of the plasma constituent and
must be supplied for the calculation to be able to start. The power exponent q
is generally between 0 and 1.

Equation (4.11) can be combined with equation (4.2) to determine the elec-
tron temperature, if krate is known. In practice, a minimum value of kion is
required to compensate for losses of electrons to the wall by diffusion and three-
particle recombination. This determines the electron temperature Te. The same
approach of determining the electron temperature is used in the DBR program.

4.3.3 An equation for kcond

The heat conduction plays an important role in the determination of the heavy
particle temperature. [1] offers a derivation of this variable.

kcond =

√
8kBTh
πM

√
2

σaa
kB (4.12)

with M the heavy particle mass and σaa the neutral-neutral collision cross sec-
tion. This is one of the input parameters. Note that kcond is a function of
Th.

4.3.4 An equation for krec

Three-particle recombination is taken into account in the DBR model. The
three-particle recombination rate has been obtained using the principle of de-
tailed balancing:

ns1nekion = n3
ekrec (4.13)

4.3. USING THE DBR TO ANALYZE A PLASMA 27

where ns1 is the Saha density. The three-particle recombination rate has been
derived using the Saha equation (3.17). In Saha equilibrium, the three-particle
recombination rate equals the ionization rate. This means that equation (4.3)
holds. Equation (3.17), equation (4.11), equation (4.3) and the fact that the ion
density ni equals ne yield an expression for krec:

krec =
(

h√
2πmekTe

)3
krate
2G

T qe (4.14)

G is the ratio of the degeneracy of the ion state and the ground state. The
factor 2 in the denominator comes from the the degeneracy of the electron. It
can be concluded that krec also depends on Te and Th and the basic physcal
and chemical parameters of the gas.

4.3.5 An equation for D∗

In the DBR program, the assumption of ambipolar diffusion is made. In this
case, the electrons diffuse away, but due to the Coulomb forces, the ions get
dragged along. The result is that the electron-ion pairs diffuse with the inertia
of the ions, but with the temperature of the electrons. D∗ has to be expressed
as a function of Te and the basic plasma parameters.

D∗ = D∗i (1 +
Te
Th

) (4.15)

Equation (4.15) expresses D∗ as a function of Te, Th and of the reduced ion
diffusion coefficient D∗i .

D∗i also has to be expressed as a function of Th and the physical and chemical
properties of the plasma constituent. It is given by:

D∗i =
kBTh
M

τ∗ia (4.16)

with τ∗ia the reduced collision time. This is the collision time multiplied with
the thermal velocity. This is equals the time it takes for a particle to sweep one
cubic meter of space, as can be seen in equation (4.17):

τ∗ia =
√

πM

8kBTh
1
σia

(4.17)

Here, σia is the ion-atom collision cross section, which generally depends on tem-
perature. The diffusion coefficient is calculated by combining equation (4.15),
equation (4.16) and equation (4.17), yielding:

D∗ = (1 +
Te
Th

)
kB
Mσia

√
πMTh
8kB

(4.18)

4.3.6 Conclusions

We now have a complete set of equations: eight nonlinear equations with eight
unknowns. Of these, three equations provide the basic plasma parameters Te,

28 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Th and ne, whereas 5 equations take these parameters and use them to calculate
the coefficients, which are again used by the first three equations. We do need
to supply a number of constants that depend on nature of the particles. These
are:

- the mass of the particle M

- the rate constant krate3

- the Arrhenius temperature exponent q

- the ionization energy Eion

- the ratio of the degeneracy of the ion ground state and the atom ground
state G

Furthermore, there are three energy dependent cross sections, σia, σaa and
σea. These can be supplied to the program in the form of look-up tables. The
program then makes simple interpolations and extrapolations to estimate the
cross section. With this information, and several physical constants that are
coded, we can solve the equations and determine Th, Te and ne.

It is important to note, however, that results of this paragraph ar not valid for
all plasmas. They apply, strictly speaking, only to plasmas that are made from a
pure gas, that have an ionization degree of less than 1 % and that there are only
single ions. If any of these conditions is not fulfilled, the approximate answer
generated by this set of equations may be highly inaccurate. On the other hand,
if the ionization degree becomes very small, maxwellization of the electrons may
cease to be valid. In this case, the program also becomes unusable. There are,
however, methods to tackle this problem.

In this section, the decrease of neutral particles caused by ionization is not
taken into account. In the actual implementation, this effect is taken into ac-
count. Because the program only functions well for plasmas with a low (less
than 1 %) degree of ionization, this effect is small. Therefore, it will not be dis-
cussed in depth; the interested reader can see the implementation in the source
code.

4.4 The programF

In the previous sections it has been shown how the Disturbed Bilateral Re-
lations can be used to make a set of equations that may be solved to produce
the approximate values of Th, Te and ne. However, solving a set of eight non-
linear equations analytically is not easy; in fact, it is not generally possible. For
this problem, an ad hoc method has been devised that exploits the form of the
equations and the underlying physics for a relatively easy way of solving the
equations. This method has been cast into a C++ program.

3In literature, the term rate coefficient is often used to indicate the speed of a reaction,
called kion in this case. This is not what is meant here; here, krate represents the constant
before the two temperature-dependent parts of the Arrhenius equation. This part is also called
the frequency factor.

4.4. THE PROGRAMF 29

The heart of the program is the class DBR. The rest of the program oper-
ates the machinery provided in this class. When the program is executed, the
necessary data, as explained in Section 4.3.6, will be loaded into the class. The
actual solving of the equations is performed by calling the calculate member
of this class. This member iteratively calculates Th, Te and ne. The main pro-
gram then accesses the class members and displays them. These steps will be
discussed in more detail. The program can be found in appendix B. A table
with key variables represented by names in the program is presented in Table
4.4.

4.4.1 The input

The first thing the main program does is creating the DBR object b by calling
the constructor. When this object is created, the constructor DBR:DBR loads the
values of several physical constants of nature. It also gives starting values for a
few variables.

The main program then reads the name of the particle. The class member
getFileName then checks if the file foo, fooea, fooaa, fooia are present, with foo
the name that has been given as input. These files contain data that is specific
for the particle. The main data file foo should contain the following items:

- the atomic mass in amu

- the rate constant krate in m−3s−1

- the Arrhenius temperature exponent q

- the effective ionization energy Eion in eV

- the ratio of the degeneracy of the ion ground state and the atom ground
state G

The other three files contain the electron-neutral collision cross section, the
neutral-neutral collision cross section and the ion-neutral collision cross section.
These are generally a function of the energy. In the program, these energies
are translated to temperatures4. They are stored in the files as a look-up table.
The files start with a number that gives the number of lines this look-up table
contains. Then, it contains a table with in the left column the temperature
and in the right column the cross section. The length of the table and the
temperature values at which they are taken are arbitrary, as long as the table
length does not exceed 10000 entries. For optimal performance, there should
be sufficient entries in an energy range where the cross section varies strongly
with the energy, such as the Ramsauer minimum. In in a range where the
cross section hardly varies, there can be less. It is also recommended that the
plasma temperature is covered by the table, as interpolation is more reliable
than extrapolation.

4Note that this is not accurate. It is better to integrate the product of cross section and
the Maxwell distribution at a certain electron temperature over the energy. This, however, is
computationally very expensive

30 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Table 4.1: The names of the most important variables in the program and the
physical quantities they represent.
ArrheniusPower q
chemical The part of ε lost by diffusion
conduction The part of ε lost by conduction
D D∗

Degrat G
eps ε
eVtoK eV/kB , with eV an electronvolt, or 1.602·10−19 J
GuessTe An initial guess for Te, used to start the calculation
GuessTh An initial guess for Th, used to start the calculation
Hpcond kcond
ionEnergy Eion
kB kB
kheat kheat
kion krate
l The length of the vessel
lambda Λ
mass The mass of the particle in kg
me The mass of an electron kg
mp The mass of a proton in kg
na The neutral density in m−3

necenter ne
np The heavy particle density in m−3

pi π
Planck h
Power ε
pressure p
Power The input power
r The radius of the vessel
recrate krec
Te Te
Th Th
Twall Twall

4.4. THE PROGRAMF 31

Next, Twall is read. The program uses the getdouble function for a robust
way of reading a double5. It also checks for a positive temperature. If the
entered number passes these checks, the class member getTwall loads the value
into the class. Similarly, the heavy particle density is read and loaded into
the class by the member getNp. The power, radius and length (note that this
assumes a cylindrical geometry) are also read and the member getPowerDensity
is called. This calculates the volume and uses it to calculate the power density,
which is the stored in the class. Next, the diffusion length Λ are stored by the
member getSmallestDimension. Furthermore, initial guesses of the electron
temperature and the heavy particle temperature, necessary for a start of the
iteration, are put in the class by the members getguessTe and getguessTh.

4.4.2 The calculation

The main program calls the calculate() member next. This member, as
its name suggests, makes the iterative calculation that determines Th, Te and
ne. It furthermore calculates the pressure p, the amount of energy lost by the
diffusion of electrons and ions εchem and the amount of energy lost by heavy
particle heat conduction εcond6.

The solver basically uses the theory outlined in section 4.2. There are two
small differences, however. Firstly, it splits equation (4.4) in two parts: a chem-
ical part and a heat transfer part. These are given in equation (4.19) and (4.20):

εchem = (npnekion − n3
ekrec)Eion =

neD
∗

npΛ2
Eion (4.19)

εcond = nenpkheat(Te − Th) (4.20)

Secondly, we take into account that the ionization of neutral atoms reduces the
amount of neutral atoms present in plasma. This effect should be small, because
as explained in subsection (4.3.6), the program only works well for low degrees
of ionization (1%). This results in the program using the variable n_a for the
neutral density and the variable n_p for the heavy particle density. These two
effects, however, increase the number of equations and unknowns to 10. On the
other hand, equation (4.11) is incorporated in equation (4.2), thus eliminating
kion and setting the number of equations that have to be solved to 9.

The loading of the particle properties

The procedure starts with determining the amount of iterations. It is set
at 100, which is more than enough in practice. Then, ne is estimated as the
square root of the value of na, both in m−3 7. This is in fact a first guess, that
will be updated later in the code. Next, the loader() member is called. This
member loads the contents of the four particle data files into memory. It does

5A floating-point type with double accuracy
6This process relies on first transferring the heat from electrons to heavy particles, and

then the heavy particles lose their energy by conduction.
7This seems a highly counterintuitive and awkward choice, especially from a dimensional

point of view. Looking at the CalculateTe member, we see that this means that the recombi-
nation part becomes small and independent of the electron density and heavy particle density,
which is the reason for the choosing this value for ne.

32 CHAPTER 4. CREATING A 0-D MODEL USING DBR

so by calling the readspecies() member, which loads the main data file, the
readLUTia() which loads the ion-neutral collision cross section look-up table,
and readLUTaa() and readLUTea() which load the other two look-up tables. If
any of these procedures gives an error, the loader() will return an error and
the calculation will be aborted.

The pre-calculation

If the loading is successful, a precalculation will be started. This precalcula-
tion determines Te for the initial guesses. This way, we can get a more or less
reliable estimate of the electron temperature Te before the real calculation is
started. The advantage is that the simple initial calculation is not very likely
to go wrong (unless conditions have been entered that cannot result in a stable
plasma), while the enhanced initial guess of the electron temperature will result
in improved stability of the main iterative procedure.

Firstly, n_a is set to n_p (Here, the loss of neutrals by ionization is not yet
taken into account for stability reasons8). Next D∗, is calculated by the calcu-
lateD() member. The calculation is performed with Equation 4.18. Note that
the calculateD() member calls the getcrosssectia() member. This calcu-
lates the ion-neutral collision cross section by linearly interpolating the look-up
table. Should the requested temperature fall above (or below) the maximum (or
minimum) value in the table, the maximum (or minimum) value will be given
as return value. Note that this is generally not what is desired, so the range of
the look-up table should contain the temperature found. Note that getcross-
sectaa() and getcrosssectea() work similarly for the other look-up tables.

Next, krec is calculated by the calculateThreeParticleRate() member.
Note that for both of these calculations, the initial guess of Te is used. Both
D∗ and krec do not depend very strongly on Te, therefore, these are reasonable
starting conditions. Then, Te is calculated from the particle balance (equation
(4.2)). Here, we solve kion, because it depends strongly on Te. Determining Te
from kion is not easy, because it depends on a power of Te and an exponent
with Te in it (see equation (4.11)) This problem is tackled by taking the Te that
appears in the power as a constant (The value from the last iteration is used.
If the calculation converges, the difference will approach zero). This constant is
then removed by division. Then, Te is calculated. Next, this new value of Te is
used to calculate D∗ and krec. These new values are the used to calculate Te,
etc. etc.

The estimate of Te thus obtained is used to make acceptable initial guesses for
other parameters. calculatekheat() uses equation (4.10) to calculate kheat.
Next, calculateHPcond() calculates kcond using equation (4.12). The member
calculateThfromPower() calculates Th, by using a combination of equation

8This effect is generally unimportant, as the calculation fails to give accurate results when
ionization becomes so large that the difference becomes significant. Increased accuracy is not
the reason it is implemented, though; rather, it prevents the program from giving nonsense
output in the case of high ionization.

4.5. DBR AND PLASIMO 33

(4.6) and equation (4.20):

εcond = kcond
Th − Twall

Λ2
(4.21)

Th should be lower than Te, because the energy is supplied to the electrons,
and they transfer it via a temperature difference to the heavy particles. calcu-
lateThfromPower() can be set to check whether this is true, and if it is not true,
it will lower the amount of heat lost by conduction until this condition is fulfilled.
This way, we not only get a first estimate for Th, but also for chemical(). Now,
we can calculate ne from equation (4.4). Note that both members are linear in
ne, which greatly simplifies the calculation. The calculation is performed by
calculatene(). Next, na is calculated by the member calculatena(). This
member also makes sure that ne does not exceed np.

The main iterative calculation

At this point, sensible starting values of the variables needed in the iteration
are generated. This iteration starts by calculating ne and Te. Next, calcu-
lateThfromPower() is called. Its result is overwritten by calculateThHP(), so
only the fact that it puts a ceiling on chemical is important. calculateThHP()
calculates Th using equation 4.6.

With ne, Te and Th, we use them to calculate the other necessary variables.
calculatePowerDistribution() calculates chemical and thus conduction. It
uses an equation similar to equation (4.19). Next, kcond, D∗, kheat, na and krec
are calculated.

These steps are then repeated for the number of times specified by imin and
imax. Next, the pressure is calculated. The function then returns a value that
indicates whether an error was encountered.

4.4.3 The output

The code used for generating output is trivial. If there has been an error
during the calculation, it tells you that this has happened. If not, it writes
down ne, na, Te, Th, p, chemical and conduction. There are class members
that are inline functions that return the appropriate variable as a function value.

4.5 DBR and PLASIMO

The previous sections contain a description of the DBR theory and the pro-
gram. In this chapter, we will investigate whether certain trends are accurately
predicted and for which range of parameters the program yields acceptable pre-
dictions. Furthermore, the effect of the improved starting condition on the speed
of PLASIMO is investigated.

It is important to note that the DBR program does not calculate profiles, but
only central values. The user still has to make a sensible guess for the profile.
In practice, a parabolic profile works well in PLASIMO.

34 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Figure 4.2: The central ne as a function of ε, for an Ar plasma in an infinite
cylinder with a radius of 10 mm and a central value of n of 1·1022 m−3. The
graph contains the results obtained by PLASIMO and the DBR program.

4.5.1 Predicting trends with the DBR program

In this section, we will examine whether some general trends are accurately
predicted by the DBR program. Although this simple and somewhat crude
program cannot be expected to yield very accurate results, general trends should
be predicted by the program. The following trends will be investigated: varying
the power, varying the number of particles, and varying the diffusion length.

Varying ε

The plasma model under study is time-independent. There is no flow involved.
We use Ar as the main plasma species. The vessel is a 10 mm segment of
a cylinder with a radius of 10 mm that is infinitely long. The central heavy
particle density n is equal to 1·1022 m−3. The power P is varied between 10
Wm−1 and 10000 Wm−1, resulting in an ε that varies between 1·105 Wm−3 and
1·108 Wm−3. These parameters are then used as input for the DBR program.
This program then calculates various quantities, such as Te, Th and ne.

In order to validate our simple model, we compare the results with a PLASIMO
calculation of these quantities. ne as a function of ε can be found in figure (4.2)
and Te and Th as a function of ε can be found in figure (4.3)

4.5. DBR AND PLASIMO 35

1e+05 1e+06 1e+07 1e+08

 ε [Wm
-3

]

0

5000

10000

15000

20000

T
 [

K
]

T
e
 DBR

T
h

 DBR

T
e
 PLASIMO

T
h

 PLASIMO

Figure 4.3: The central Te and Th as functions of ε, for an Ar plasma in an
infinite cylinder with a radius of 10 mm and a central value of n of 1·1022m−3.
The graph contains the results obtained by PLASIMO and the DBR program.

Figure 4.2 shows that the DBR program predicts an almost linear dependence
of the electron density on the power. This means, that the energy per electron
does not change. This is a direct result from equation (4.5) where it can be seen
that both loss processes are linear in ne.

Figure 4.3 shows that Te is almost independent on ε. In this plasma, diffusion
and not recombination is the primary loss mechanism. In this case, the main
dependence of the loss mechanism on input power is its linear dependence on
ne, which depends linearly on ε. The same is true for ionization, the production
mechanism. These dependencies therefore cancel. As the electron temperature
is determined by the requirement that it should produce sufficient ionization to
keep the discharge going (equation (4.2)), and as the dependencies on ε cancel,
Te does not depend on ε.

Figure 4.3 shows that Th increases with ε. The increase is roughly linear. The
following explanation is offered: ne increases almost linearly with ε (figure 4.2).
The amount of energy lost by diffusion is linear in ne and thus in ε. This means,
that the fraction of the energy lost by conduction remains roughly constant,
meaning that εcond increases roughly linearly with ε. Th is now dependent on
two equations: equation (4.12) and equation (4.20). Equation (4.12) shows,
that kcond depends on the square root of Th (σaa is assumed to be constant).
For most of the data points, Th is close to 300 K, so kcond is almost constant.
If kcond is constant, Th-Twall is linear in εcond. Therefore, Th is roughly linear

36 CHAPTER 4. CREATING A 0-D MODEL USING DBR

in ε. For values of Th significantly above 300 K, deviations are expected and
found.

As can be seen in both figure 4.2 and 4.3, PLASIMO shows the same general
trends as the DBR program. There are, however, deviations, which will be
discussed in the following paragraphs.

For high power, PLASIMO does not predict a linear increase of ne with ε as
the DBR program does. This difference is caused by an omission in the DBR
program. For higher degrees of ionization, electron heat conductivity becomes
important. This can dramatically increase the rate at which energy is lost,
thus decreasing the amount of electrons. This is not implemented in the DBR
program, because it is virtually impossible to implement this in an essentially
one-control volume approach, like the one used in the DBR program.

The DBR program predicts the value of Te with an error of less than 10 %
with respect to PLASIMO. The general trend is identical for PLASIMO and
DBR.

The DBR program accurately predicts Th for low ionization. However, when
it fails to produce correct ne, it also fails to produces a correct Th. When ne is
deviating, the electron energy balance (equation (4.5)) deviates. The electron
energy balance is essential for a prediction of Th; thus, when the energy balance
deviates, deviations in Th are to be expected.

Varying the particle density

The models discussed in this section are used as a basis for a study on the
dependence of various plasma parameters on neutral particle density. In this
case, the power is fixed at 100 Wm−1, but n is varied between 3·1023 m−3 and
1·1020 m−3. PLASIMO models in the same parameter range have been used to
check the results. The resulting values of ne as a function of n are presented in
figure 4.4. The resulting values of Te and Th as a function of n are presented in
figure 4.5.

Figure 4.4 shows a ne that increases linearly with n for low values of n. Then,
ne reaches a peak value, after which it drops again. The explanation for this
behavior lies in the energy balance, equation (4.5). When n is low, most of the
energy is lost by diffusion. An increase in n causes a linear decrease in diffusion
speed. This is compensated by an increase in ne. This trend breaks down when
conduction, and thus heat production, becomes significant. For conduction, an
increase in n increases the speed at which energy is transferred from electrons
to heavy particles, thus decreasing the amount of energy available for sustaining
electron/ion pairs, so an increase in n causes a decrease in ne.

Figure 4.5 shows that Te increases as n decreases. This can easily be under-
stood: when n decreases, the amount of diffusion increases, and thus a higher
electron temperature is needed to sustain the plasma. Note that this will even-
tually cause the plasma to collapse, as the loss processes will become so fast

4.5. DBR AND PLASIMO 37

Figure 4.4: The central ne as a function of n, for an Ar plasma in an infinite
cylinder with a radius of 10 mm and an ε of 1·106 Wm−3. The graph contains
the results obtained by PLASIMO and the DBR program.

38 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Figure 4.5: The central Te and Th as a function of n, for an Ar plasma in an
infinite cylinder with a radius of 10 mm and an ε of 1·106 Wm−3. The graph
contains the results obtained by PLASIMO and the DBR program.

4.5. DBR AND PLASIMO 39

that the plasma cannot be sustained. For the DBR program, this means that
the temperature will rise to infinity and the program will give errors. Using
the DBR program for parameters for which the discharge can only barely be
maintained may lead to large errors, because in this range, there are significant
deviations from the Maxwell distribution, which are not taken into account in
the DBR program. Also, Knudsen flow would need to be taken into account to
accurately describe the diffusion (See chapter 7).

Figure 4.5 shows that Th increases as n increases. This can be explained
by the fact that as n increases, more heat is transferred from the electrons to
the heavy particles, and in order to transport this heat, a larger temperature
gradient is needed, as the heat conduction coefficient is more or less independent
of n. Thus, Th has to be high at the center.

The results of the DBR program match the results produced by PLASIMO
closely. Not only are all the trends identical, the temperatures match within
10%, and the electron density deviates less than a factor of 2.

Varying the diffusion length

The models discussed in this section are used as a basis for a study on the
dependence of various plasma parameters on diffusion lenght. In this case, ε is
fixed at 1·106 Wm−3, but Λ is varied between 0.001 m and 0.1 m9. PLASIMO
models in the same parameter range have been used to check the results. The
resulting values of ne as a function of Λ are presented in figure 4.6. The resulting
values of Te and Th as a function of Λ are presented in figure 4.7.

Figure 4.6 shows that the electron density increases as Λ increases. When
Λ increases, the amount of particles lost by diffusion decreases. This means,
that less energy is lost per electron, and that the amount of electrons may thus
rise. This trend continues until Saha equilibrium is reached in the limit of no
diffusion.

Figure 4.7 shows that Te decreases as Λ increases. An increasing Λ means
decreasing diffusion, and thus the amount of ionization can be lower to sustain
the discharge. This results in a lower value of Te.

Figure 4.7 shows that Th increases as Λ increased. Increasing Λ decreases
diffusion, which means that more heat must be transferred by conduction. This
requires a larger heavy particle temperature gradient. The increase in Λ and
the increase in heavy particle temperature gradient result in an increase in Th
if Λ increases.

For short diffusion lengths (much diffusion) the electron density is low and the
DBR program and PLASIMO do not differ much. For longer diffusion lengths,
electron heat conduction starts to become important in PLASIMO, and the
energy distribution will start to differ, resulting in large differences in ne and

9In this case, Λ is equal to r.

40 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Figure 4.6: The central ne value as a function of Λ, for an Ar plasma in an
infinite cylinder. The ε is fixed at 1·106 Wm−3, and n is set to 1·1022 m−3. The
graph contains the results obtained by PLASIMO and the DBR program.

4.5. DBR AND PLASIMO 41

Figure 4.7: The central Te and Th as a function of Λ, for an Ar plasma in an
infinite cylinder. The ε is fixed at 1·106 Wm−3, and n is set to 1·1022 m−3. The
graph contains the results obtained by PLASIMO and the DBR program.

42 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Table 4.2: Some key features of the three plasma settings under study to deter-
mine the effect of the starting condition on convergence speed.

Λ [m] ε [Wm−3] n [m−3]
setting 1 1·10−2 1·106 1·1022

setting 2 1·10−2 1·106 1·1021

setting 3 1·10−1 1·106 1·1022

Th. On the other hand, there will not be large differences between DBR and
PLASIMO for Te, because the DBR program does not use the electron energy
balance, where the deviation occurs, for the calculation of Te.

4.5.2 Performance

One of the reasons to construct the DBR program was to obtain good starting
conditions for PLASIMO, improving PLASIMOs stability. To investigate the
ability of the DBR program of providing good initial conditions for PLASIMO
we studied the convergence behavior of three different plasma settings. The
parameters of these models are presented in table 4.2.

For each setting, the number of steps necessary to converge to a PLASIMO
residual of 1·10−6 is given. Three different start conditions were taken:

- An simple starting condition of Te=12000 K, Th=3000 K and ne=0.01n
(called Simple in table 4.5.2)

- The starting condition generated by DBR (called DBR in table 4.5.2)

- The central values calculated by PLASIMO are used to construct
parabolic profiles, which are used as starting condition (called PLASIMO
in table 4.5.2)

In each case, it is assumed that Te at the wall is the same as in the center, that
Th drops parabolically to Twall and that ne drops parabolically to 1 m−3.

These models are run by PLASIMO with the different starting conditions.
The number of iterations these models need to converge to 1·10−6 is given in
table 4.5.2. It shows that the DBR program is better than the simple first
guess in the first two cases, as expected. It does not perform well in the last
case. In this case, there is lots of electron heat conductivity, and this causes
the DBR program to yield inaccurate results, as explained above. As expected,
the starting values that were obtained from the output of the PLASIMO model
give the fastest convergence, as they are closest to the solution. For the range
of parameters where the model is applicable, the DBR program produces data
that it suitable for use as an input parameter.

4.6 Scaling laws and DBR

As stated before another important background of the construction of the
DBR was to get insight in scaling laws. We start with the electron particle

4.6. SCALING LAWS AND DBR 43

Table 4.3: The number of iterations needed for the models to converge for the
different starting conditions

Simple DBR PLASIMO
setting 1 46496 44481 9829
setting 2 157595 78227 151941
setting 3 8001 24433 7566

balance which is reproduced here without the recombination term so that it
reads:

kion =
D∗

n2
pΛ2

(4.22)

Now, the electron temperature Te is determined by the value of kion necessary
to sustain the plasma. This means, that Te depends on the product npΛ: if this
product remains constant, so does Te, because the dependence of D∗ on Th is
of minor importance for a broad range of the other variables. In practice, this
picture becomes less clear when step-wise ionization becomes important.

Equation (4.19) shows similar behavior, if appropriately rewritten:

Pchem
Ad

=
neD

∗

npΛ2
Eion (4.23)

with A the area of cylinder wall. Now, if it is assumed that d is equal to Λ, and
that the portion of the heat removed by conduction is negligible compared to
the portion lost by diffusion, we obtain:

P

A
=
neD

∗

npΛ
Eion (4.24)

In this equation, it is seen that also ne solely depends on the product npΛ,
provided that P/A is kept constant. With the assumption that d is equal to
Λ, it can be seen that both Te and ne scale with the value of the product npd.
This means that if np is varied, while npd and PA−1 are kept constant, Te and
ne should remain constant. This will be used to verify the DBR program.

To this end, a set of models is made. These model are made with the following
parameters:

- n is varied between 2·1020 m−3 and 1·1023 m−3

- The product nd is kept at a constant value of 1·1020 m−2

- An Ar plasma is used

- A power of 3.18·105 Wm−2 is used.

- The plasma is a 0.1 m long segment of an infinite cylinder

The resulting values of ne as a function of n are presented in figure 4.8. The
resulting values of Te and Th are presented in figure 4.9.

44 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Figure 4.8: ne as a function of n for a plasma in which n is varied, while keeping
nd and the power per surface area constant.

Figure 4.9: Te and Th as a function of n for a plasma in which n is varied, while
keeping nd and the power per surface area constant.

4.7. CONCLUSIONS 45

Figure 4.8 shows that ne is indeed almost independent of np. The slight
dependence of ne on np may be caused by the fact that Th does vary a bit
(figure 4.9), thus changing D∗ and causing deviations.

Figure 4.9 shows that Te is indeed almost independent of np. Here, the
small deviations (less than 1% with variations of np of more than two orders of
magnitude) are attributed to the small variations of D∗ caused by the variations
in Th.

It can clearly be seen in figure 4.9 that Th, and in particular Th-Twall does
depend strongly on np. This can be explained using a modified electron energy
balance. If it is assumed that Λ equals d, then equation (4.21) can be rewritten
to:

Pcond
A

= kcond
Th − Twall

Λ
(4.25)

It can clearly be seen that Th depends on Λ.

4.7 Conclusions

In this study, the Disturbed Bilateral Relations have been used to create a
program that can be used to obtain a rough estimate of the main plasma param-
eters ne, Te and Th, usable as a starting condition for an iterative procedure.

The DBR program has been tested, and the test results have been compared
to results obtained by PLASIMO and compared to theoretical trends. The
DBR program compares well with PLASIMO and the theoretical trends for
low degrees (less than 1%) of ionization. For higher degrees of ionization, the
fact that electron heat conductivity is not taken into account causes the DBR
program to yield inaccurate results. It is therefore not recommended to use the
DBR program in this regime.

The speed improvement obtained by using the results of the DBR program
as a starting condition have been investigated. The results of the DBR program
indeed seem to result in a substantial speed improvement. This, however, is not
the case if the DBR program is used to get a starting condition for plasmas with
more than 1% ionization.

The DBR program can also shed light on various scaling laws. It is also useful
in determining the relative important of transport and equilibrium processes.

46 CHAPTER 4. CREATING A 0-D MODEL USING DBR

Chapter 5

From NLTE to LTE

5.1 Introduction

In chapter 3, fluid flows and LTE plasmas were discussed. Armed with the
knowledge on equilibrium and equilibrium disturbing processes obtained in chap-
ter 4, we will now discuss the next stage in departure from equilibrium: the
NLTE plasma.

PLASIMO is capable of simulating NLTE plasmas. In a NLTE plasma, we
not only have φ-equations for momentum and mass conservation, but also two
φ-equations for temperature, one for the electron temperature and one for the
heavy particle temperature. Moreover, various φ-equations are needed to de-
scribe the transport of various individual species. This gives us many more φ-
equations than in the LTE-case, where we only have one temperature φ-equation
and where the chemical composition is handled by equilibrium relations.

PLASIMO uses its NLTE module for simulating NLTE plasmas. In this sec-
tion, it will be tested whether this module can handle plasmas that are near
LTE. By gradually taking a plasma from NLTE to LTE, it should be possible
to see the system reach thermal and chemical equilibrium, where thermal equi-
librium stands for Te=Th and chemical equilibrium to the conditions for which
the chemical composition obeys the laws of statistical mechanics, more specif-
ically, when the degree of ionization obeys the Saha equation. This has been
done in two ways: the power density can be increased and the pressure can be
increased. Of course, total equilibrium is a concept that exists only in theory;
in this section, a system will be considered to be in thermal equilibrium when
Th and Te differ less than 1% and a system will considered to be in chemical
equilibrium when ne and the electron density predicted by the Saha equation
nSaha differ by less than 1%.

5.1.1 Increasing The Power Density

The plasmas simulated here are similar to the plasma described in section
3.3.2. They consist of Ar with a pressure of 1000 Pa at 273 K, in a segment of
a long tube that is 0.1 m in length and a radius of 0.25 m. Only the ground

47

48 CHAPTER 5. FROM NLTE TO LTE

0 0.05 0.1 0.15 0.2 0.25
r [m]

0

5000

10000

15000

T
 [

K
]

T
e
, 5000W

T
h
, 5000W

T
e
, 1000W

T
h
, 1000W

T
e
, 500W

T
h
, 500W

T
e
, 200W

T
h
, 200W

Figure 5.1: Th an Te of an Ar plasma, calculated by a PLASIMO NLTE model.
The plasma remains close to LTE for powers of 500 W and up. Note that Te
for 200 W is higher than for 500 W. For Th, some of the wall points have been
omitted for clarity. It was in all cases equal to the boundary condition Th=300
K.

state of the ion and the ground state of the atom are taken into account. The
electric power is coupled in by an uniform electric field in the z-direction. The
plasma recombines at the wall. The wall temperature for the heavy particles is
fixed at 300 K; the boundary condition at the wall of the electron temperature is
a Homogeneous Neumann boundary condition (meaning that the derivative in
the direction perpendicular to the boundary is zero). The power input is varied
between 200 and 5000 W. This results in the temperature profiles presented in
figure 5.1 and the ne profiles presented in figure 5.2.

Increasing the power generally increases the electron density 4. The increase
in electron density causes more frequent electron-heavy particle collisions, which
reduce the temperature difference between electrons and heavy particles. It also
increases the ionization and recombination reaction rates, making transport
relatively less important. Figure 5.1 shows the temperatures and shows that for
lower power densities, the less frequent collisions between electrons and heavy
particles allow the decoupling of Te and Th, whereas for higher temperatures, the
system is close to thermal equilibrium. The higher Te means that the electron
density can stay relatively high, which can be seen in figure 5.2. This figure also
shows that large deviations from Saha equilibrium occur at higher power than
deviations from thermal equilibrium. Also, the system is not in Saha equilibrium
near the wall. The main cause is that the drop in electron density predicted by
Saha’s formula is diminished by diffusion from other parts of the plasma.

5.1. INTRODUCTION 49

0 0.05 0.1 0.15 0.2 0.25 0.3
r [m]

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

n e[m
-3

]

n
e
, 5000W

Saha, 5000W
n

e
,1000W

Saha, 1000W
n

e
, 500W

Saha, 500W
n

e
,200W

Saha, 200W

Figure 5.2: ne of an Ar plasma, calculated by a PLASIMO NLTE model. It is
compared with the Saha density.

5.1.2 Increasing Pressure

Another strategy to influence the collision rate and thus the degree of equilib-
rium departure is to vary the pressure. The plasma used in this case is similar
to the one presented in section 5.1.1. The power is fixed at 1000 W, while the
pressure is varied between 100 Pa and 2000 Pa.

This approach causes only small variations in temperature, therefore, Te - Th
rather than Th and Te have been plotted in order to provide clear graphs. This
graph can be found in figure 5.3. A graph of the electron density, compared to
the Saha value of the electron density, is presented in figure 5.4.

The collision rate between ne and na scales with ne and na. Therefore, the
difference between Th and Te is inversely proportional in ne · na. A comparison
between figure 5.3 and figure 5.4 shows that this is indeed approximately true.
It can also be seen that the differences are larger near the wall. This is caused
by the boundary condition: the heavy particle temperature is fixed at the wall,
while the electron temperature is not. There are large gradients in the heavy
particle temperature. This means that a lot of energy has to be transferred from
the electrons to the heavy particles. This causes a relatively large difference
between Te and Th.

For higher pressures, Saha equilibrium is established in the center of the
tube. A decrease in pressure will cause an increase in diffusion, and therefore
Saha equilibrium will be violated when the pressure drops. The nonequilibrium
region near the wall will expand and fill the whole tube, and the deviations from
equilibrium will become larger.

50 CHAPTER 5. FROM NLTE TO LTE

0 0.05 0.1 0.15 0.2 0.25
r [m]

0.01

0.1

1

10

100

1000

10000
T

e -
T

h [
K

]

2000 Pa
500 Pa
200 Pa

Figure 5.3: (Te-Th) of an Ar plasma, calculated using a NLTE approach, for
various pressures. The precision is 0.01 K

0 0.05 0.1 0.15 0.2 0.25
r [m]

0

2e+21

4e+21

6e+21

8e+21

n e [
m

-3
]

n
e
 2000 Pa

Saha 2000 Pa
n

e
 500 Pa

Saha 500 Pa
n

e
 200 Pa

Saha 200 Pa

Figure 5.4: ne of an Ar plasma, calculated using a NLTE approach. It is com-
pared with the Saha density, derived from the numerical values of the electron
temperature and the neutral density.

5.2. DEVIATIONS BETWEEN THE LTE AND NLTE APPROACHES 51

5.1.3 Computational Speed

Using the NLTE code for a plasma that is nearly in LTE turned out to have
an important disadvantage. The computational speeds for the models that were
relatively far from equilibrium (all plasmas that had a power of 1000 W or
less) was roughly the same (about 5 · 104 iterations to get the residual down to
10−11). The other plasmas reached an intermediate solution that resembles the
real solution closely in about 2 · 104 iterations. However, the final convergence
to a residual of 10−11 takes considerably longer for 2000 W (about 3 · 105 iter-
ations) and even longer for 5000 W (about 2 · 106 iterations). This stage in the
convergence is quite smooth, but extremely slow.

A possible cause for this is in the way PLASIMO calculates the energy flows
from heavy particles to electrons and back. In equilibrium, the effective trans-
port by these flows approaches zero. This will also happen in PLASIMO. How-
ever, the way in which this happens may cause problems. The energy flow
equation can schematically be represented by

Trφ = P −Dφ (5.1)

where φ represent temperature in this case, Tr represents transport, P repre-
sents production and D represents destruction. The production and destruction
terms, called Sc and Sp in PLASIMO, become very large if we get close to equi-
librium. This causes two problems:

- The fact that of the absolute value of |SpT | and |Sc| are large means that
the transport become almost negligible. Thus, changes in the
temperature in a neighboring grid point will only very slowly affect the
value in the grid point, slowing convergence [3]. Or, simply put, using a
transport equation when transport is negligible doesn’t work very well.

- The increasing |Sc| and |SpT | and the decreasing difference between
them may cause cancellation. This occurs, when two numbers that differ
little are subtracted. This leads to inaccurate, or in the worst case,
arbitrary results. This is obviously not desireable. Note that this is a
computer-caused problem.

5.2 Deviations between the LTE and NLTE ap-
proaches

In the previous section we have seen that the convergence of a NLTE model
becomes poor when it approaches LTE. A comparison of the results, however,
reveals a far more serious problem. Comparing figures 3.6 and 5.1 shows a sizable
difference between the results of the NLTE and LTE calculation. Even when
the NLTE model gives an electron density close to Saha equilibrium and Te and
Th values almost equal to eachother, we see that the central temperature is 4K
smaller than for the comparable LTE case. In this section, we will investigate
the cause of these deviations and attempt to draw general conclusions about the
validity of LTE treatments.An important observation guiding this study is the
fact that the ne found in the NLTE model is almost equal to the value prescribed

52 CHAPTER 5. FROM NLTE TO LTE

0 0.05 0.1 0.15 0.2 0.25
r [m]

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

E
ne

rg
y

T
ra

ns
fe

r
[J

 m
-3

]

S
c
 5000 W

|S
p
T| 5000 W

S
c
 2000 W

|S
p
T| 2000 W

S
c
 500W

|S
p
| 500 W

Figure 5.5: The energytransfer between heavy particles and electrons. The
linear and constant part of the source term are of near equal magnitude. Thus,
the difference is very small compared to either one. This is unfavorable from a
numerical point of view.

by the Saha equation (3.17) in which the NLTE temperature is substituted.
Thus, the set of NLTE results is self-consistent. All we need to do is find the
cause for the temperture difference.

5.2.1 The models

In order to investigate the difference between the NLTE and LTE approach,
two models has been made that describe the same plasma, but use either a
NLTE or LTE approach. In order to facilitate the comparison, the models are
kept as simple as possible, and every effort has been made to make the NLTE
and LTE models as similar as possible, even if this would mean sacrificing some
physical accuracy.

Adapting the model

The NLTE model has a different boundary condition than the LTE model.
In the LTE model, the electron wall temperature, like the heavy particle wall
temperature, is fixed at 300 K. In the NLTE case, the electron wall temperature
is determined by the Homogeneous Neumann boundary condition. In order to
make a cleaner comparison between NLTE and LTE, the boundary condition
for Te is set to 300 K. This will eliminate any possible influence of different
boundary conditions on the deviations under study.

Of course, this boundary condition has less physical foundation than the Ho-
mogeneous Neumann boundary condition that is commonly chosen because of
the inefficient heat transfer from the electrons to the wall. As our purpose is the
investigation of the differences between LTE and NLTE, rather than obtaining

5.2. DEVIATIONS BETWEEN THE LTE AND NLTE APPROACHES 53

0 0.05 0.1 0.15 0.2 0.25
r [m]

0

5000

10000

15000

20000

T
 [

K
]

T
e

T
h

T
l

Figure 5.6: The temperature calculated with the LTE module Tl and Te and Th
calculated with the NLTE module. The difference between Te and Th is very
small, but differs strongly from the temperature calculated with the LTE model.

a quantitatively significant result, the reduced reliability of the numerical value
is not relevant.

The model with the new boundary condition has been run with the PLASIMO
code, using both the LTE and NLTE code. This has produced data on the
temperature, which is presented in figure 5.6. It also produced data on the ne,
which is presented in figure 5.7.

Comparing figure 3.6 and 5.1 with figure 5.6 shows that the change in the
boundary condition has no significant effect on the results of the temperature
calculation. The electron density calculation is also not significantly influenced,
as can be seen by comparing figure 3.5 and figure 5.2 with figure 5.7. From this,
we conclude that the difference between the results of the NLTE and LTE calcu-
lations is not caused by de electron temperature boundary condition, and that
changing the electron temperature boundary condition does not significantly
impact the results.

In order to investigate the cause of the deviations between LTE and NLTE,
the model is run with different settings. The new settings are chosen to amplify
the effect causing the difference. This model differs at two points from the
previous model:

• The filling pressure has been increased by a factor of 10 to 10000 Pa.

• The power input has been decreased by a factor of 5 to 1000 W.

This model has been run with the PLASIMO code, both with the LTE code
and the NLTE code. The value of the temperature thus obtained is presented in

54 CHAPTER 5. FROM NLTE TO LTE

0 0.05 0.1 0.15 0.2 0.25
r [m]

1e+21

1e+22

1e+23

n e [
m

-3
]

LTE
NLTE
NLTE Saha

Figure 5.7: The electron density calculated with the LTE module and the elec-
tron density calculated with the NLTE code. Also, the Saha density for the
NLTE case is presented. For the NLTE case, the system is very close to Saha
equilibrium in the center, while the electron density near the wall remains fairly
high, despite the very small Saha density. This is because the electrons can
diffuse from the high-electron density part to the low electron-density part.

figure 5.8, while the electron densities are presented in figure 5.9. The thermal
conductivities obtained by the model are presented in figure 5.10.

5.2.2 The cause of the deviations between NLTE and LTE

The LTE model gives a much higher temperature at the center of the plasma
than the NLTE model. For the LTE case, the thermal conductivity seems to
be higher than for the NLTE case. This would mean that the temperature
gradient should be lower, as the losses are proportional to both the thermal
conductivity and the temperature gradient. Because the wall temperature is
fixed, and a smaller gradient implies a smaller energy difference between wall
and center, one would expect the LTE plasma to have a lower, and not a higher,
temperature.

This apparent contradiction will be (partially) explained using figure 5.11.
This figure is constructed from the raw data of figures 5.9 and 5.10. This figure
shows a scaled value of the temperature difference between the LTE and NLTE
treatment, a scaled value of the difference in heat conductivity between the
LTE and NLTE treatment, and a scaled value of the difference in temperature
gradient between NLTE and LTE.

Figure 5.11 shows a remarkable difference between the thermal conductivity
calculated with the NLTE case and the LTE case near the wall. For the NLTE
case, the conductivity is much higher. This is caused by a higher electron heat

5.2. DEVIATIONS BETWEEN THE LTE AND NLTE APPROACHES 55

0 0.05 0.1 0.15 0.2 0.25
r [m]

0

5000

10000

15000

T
 [

K
]

T
e

T
h

T
l

Figure 5.8: The temperature calculated with the LTE module Tl and Te and
Th calculated with the NLTE module. The deviations start at 2 mm from the
wall, and the full temperature difference is formed at 5 mm from the wall. The
difference between Te and Th is very small

0 0.05 0.1 0.15 0.2 0.25
r [m]

1e+20

1e+21

1e+22

n e [
m

-3
]

LTE
NLTE
NLTE Saha

Figure 5.9: The electron density calculated with the LTE module and the elec-
tron density calculated with the NLTE code for. Also, the Saha density for the
NLTE case is presented. For the NLTE case, the system is very close to Saha
equilibrium in the center, while the electron density near the wall remains fairly
high, despite the very small Saha density. This is because the electrons can
diffuse from the high-electron density part to the low electron-density part.

56 CHAPTER 5. FROM NLTE TO LTE

0 0.05 0.1 0.15 0.2 0.25
r [m]

0

0.1

0.2

0.3

0.4

0.5

λ
[J

 K
-1

m
-1

]

λ
l

λ
h

λ
e

λ
n

Figure 5.10: The heat conductivity in the LTE case(λl), and the electron (λe),
heavy particle (λh) and total (λn) heat conductivity in the NLTE case. Note that
at the wall, where the conductivity is the lowest, the NLTE heat conductivity
is higher than the LTE heat conductivity. while in the rest of the plasma, it is
the other way around.

conductivity for the NLTE case, which in turn is caused by the higher electron
density near the wall for the NLTE case. This is caused by diffusion.

In the region where the thermal conductivity is higher for the NLTE case than
for the LTE case, the temperature gradient is higher for the LTE case than for
the NLTE case, and the NLTE temperature is lower. This is in agreement with
the equation for the heat flux:

Jh ∝ λ~∇T (5.2)

which shows that for a fixed heat flux, ~∇T rises when λ drops. This is in
agreement with the results in figure 5.11. Here, the higher thermal conductivity
for the NLTE case causes a lower temperature gradient near the wall.

The larger temperature gradient in the LTE case is in a region where the
temperature gradient is large compared to other regions in the plasma. This
means, that the absolute effects of the differing temperature gradients are fairly
large1. This can also be seen in figure 5.11: the difference in temperature
between the LTE and NLTE approach originates close to the wall. The rest of
the plasma, in which the thermal conductivity is higher for the LTE case than
for the NLTE case, the temperature difference becomes smaller, but does not
vanish entirely.

1A different way to look at this is by thinking of it as a classic bottleneck. The bottleneck
for the heat conductivity is near the walls, so an increase or decrease in the heat conductivity
there has a relatively larger impact.

5.2. DEVIATIONS BETWEEN THE LTE AND NLTE APPROACHES 57

0 0.05 0.1 0.15 0.2 0.25
r [m]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ra
tio

 [
-]

(λ
l
-λ

n
)(λ

l
)
-1

(T
l
-T

n
)(T

l
)
-1

(T
l
’-T

n
’)(T

l
’)

-1

Figure 5.11: The dashed line in the plot is the difference in thermal conductivity
between the LTE case (λl) and NLTE case (λn), scaled by dividing it by λl.
Notice the very large difference in NLTE and LTE heat conductivity near the
wall. The gray line is the difference between the LTE temperature Tl and
the NLTE electron temperature Th, scaled by dividing it with Tl. Notice the
peak near the wall. Here, rather than in the center, the temperature difference
between the NLTE and LTE originates. The black line is the difference between
the temperature gradient in the LTE case and the temperature gradient in the
NLTE case, scaled by dividing it with the temperature gradient in the LTE
case. The large temperature gradient in the LTE case is in the same region in
the plasma as the large gradient in the heat conductivity.

5.2.3 Conclusions

Models have been made to investigate the different central temperatures found
when using the LTE and NLTE approach. Significant temperature difference
between the NLTE and LTE case is found.

An important cause of the temperature difference between NLTE and LTE is
found near the wall. Here, the NLTE approach, which allows deviations from
Saha equilibrium, finds an electron density that is much higher from the electron
density found using the LTE approach. This higher electron density causes a
higher thermal conductivity, which reduces the large temperature gradient near
the wall. This also reduces the temperature in other parts of the plasma.

Noticing that it makes a significant difference whether one uses the LTE or
NLTE approach, it is important to find out whether the LTE or NLTE approach
is better. Near the wall, the disturbances in the Saha balance become larger
(See chapter 4). This cannot be handled by the LTE approach, which does not
allow for these disturbances. Therefore, it is better to use the NLTE approach
near the wall.

58 CHAPTER 5. FROM NLTE TO LTE

Although the difference in electron density near the walls is partially respon-
sible for the difference in central temperature, the difference between the tem-
peratures in the center of the plasma found with the NLTE and LTE approach
cannot be fully explained by this. Therefore, another cause of these differences
must be present. This is left for further investigation.

Chapter 6

Implementing pinching in
PLASIMO

6.1 Introduction

The hollow cathode produces EUV radiation during the pinch phase when the
magnetic field produced by the large current pulls the current-carrying particles
together. This creates a very hot and dense plasma, where the highly ionized
species emit radiation. In order to model this, it is essential that the physics
behind the pinching effect is implemented.

As a first step to implement pinching in PLASIMO, the magnetic field pro-
duced by the current flowing through the plasma and the Lorentz force this
magnetic field exerts on the current will be implemented. In this study we re-
strict ourselves to a cylinder symmetry. The Lorentz force is treated as a body
force.

6.1.1 The Lorentz force in PLASIMO

In PLASIMO, the momentum balance is cast in the form of a φ-equation,
being 3.7. In this equation, there is an external volume source term Bx. One of
the extra forces is the Lorentz force. It will be our objective to write a model
that calculates the Lorentz force for a given plasma configuration. This Lorentz
force will be used by the momentum φ-equation to calculate the flow field. The
momentum balance applies the Lorentz force in the nodal1 point of the grid.
Magnetization, which is the“trapping”of charged species by magnetic field lines,
thus changing the transport properties, is not taken into account.

6.1.2 The axisymmetric grid

As stated, this study is restricted to cylindrical system. The cylindrical prob-
lem is 2D; the cylindrical system is represented by a body which is formed by

1The nodal point is the central (for a nonstretched grid) point in a control volume. Prop-
erties as temperature, composition, pressure, etc. are stored in these points, and assumed to
be constant troughout the control volume

59

60 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

S

W

N

E

Control volume

Nodal points
Axis of symmetry

Figure 6.1: An axisymmetric grid. The 2D grid is rotated along the south
boundary to obtain a quasi-3D cylinder. Note that the nodal ”points” are in
fact rings. Also note that in the boundary control volumes the nodal point does
not lay in the center of the control volume.

rotating a grid like the one in figure 6.1 around the south grid boundary, which
represents the axis of the cylinder.

6.2 General theory

The pinching is caused by two effects: the magnetic field caused by the current
(which consist of moving charged particles) and the Lorentz force that this
magnetic field exerts on the current. The magnetic field will be treated first.

6.2.1 The magnetic field

Magnetic fields are created by moving charged particles. In a plasma, both
the ions and the electrons can drift when they are exposed to an electric field.
This causes a current to flow. For the case of an axisymmetric plasma with a
current in the z-direction, it is convenient to use Amp‘ere’s law,∮

~Bφ · d~l = µ0Iencl (6.1)

to calculate the φ-component of the magnetic field ~Bφ. µ0 is the magnetic
permeability of vacuum and Iencl is the current that through the surface enclosed
by the integral.

The integration in (6.1) is done over a circle, with a radius equal to the
distance to the nodal point, where we want to know the Lorentz force. This is

6.2. GENERAL THEORY 61

illustrated by figure 6.2. Using this control surface, Ampère’s Law becomes:

Bφ =
µ0Iencl

2πr
(6.2)

With (6.2), the Lorentz force in a nodal point can be calculated.

The Ampère’s Law control surface has current flowing through it. This current
is the sum of the current flowing through the control volumes that are completely
cut by the control surface and the control volume that is only partially cut by
the control surface. This is the control volume in which the nodal point lies in
which the Lorentz force is being calculated. Of the control volumes that are
totally cut, all the current flowing trough them is taken into account. Of the
control volume which is only partially cut, only the part of the current which
is enclosed by the control surface should be taken into account. Assuming a
constant current density in this control volume, this means that the part of the
current x that is enclosed by the control volume is given by (6.3)

x =
πr2
p − πr2

s

A
≈
(
πr2
p − π(rp −

∆r
2

)2

)
1
A

=
(
πrp∆r − π

∆r2

4

)
1
A

(6.3)

Here, rp is the position of the nodal point, rs is the position of the southern
wall, A is the total surface area of the control volume and ∆r is the width of
the control volume. By summing the currents through the control volumes that
are totally enclosed and the control volume that is partially covered, Iencl is
obtained. The magnetic field can now be calculated with (6.2).

The value of these magnetic fields is calculated for all the control volumes
in the grid. The implementation in the code will be explained in section 6.3.
This gives the φ-component of the magnetic field over the whole grid. With this
magnetic field the Lorentz force can be calculated.

6.2.2 The Lorentz force

The Lorenz force is a force exerted by a magnetic field on moving charges. It
can therefore be interpreted as a force on a current. In PLASIMO, we implement
the Lorentz force as a bulk force rather than implementing it on all the individual
particles.

The Lorentz force of a magnetic field on a current can be expressed by:

~F ∗l = ~J × ~B (6.4)

Here, ~F ∗l is the Lorentz force density, ~J the current density and ~B the magnetic
field. Note that we deal with vector quantities and vector products. In the case
studied here (all current in the positive z-direction, the magnetic field in the
positive φ-direction) ~F ∗l is in the negative r-direction. Its magnitude is then
given by

F ∗l = JBφ (6.5)

with F ∗l the Lorentz force density in the negative r-direction, and J is the
magnitude of the current density in the positive z-direction. By integrating

62 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

Figure 6.2: The gray lines represent the borders of the control volumes. These
control volumes are rings. The dots represent the current flowing through con-
trol volumes. Of course, the current does not flows in discrete dots. The current
flows out of the paper in this view. PLASIMO represents the current through
a control volume by a current that flows trough the nodal point. (Note that
the nodal points are in fact circles centered in the middle of the rings which are
obtained by rotating the control volume.) The magnetic field produced by the
current going through the circular control surface of Ampère’s law is represented
by the arrows. The control surface extends from the center to the nodal ”point”.

(6.5) over a control volume, we see that the force exerted on a single control
volume is then equal to the magnetic field in the control volume times the current
in that control volume times the length of the control volume. This is shown in
figure 6.3. It schematically shows the Lorentz force exerted on a single control
volume.

6.3 Implementation in the codeF

In this section, the implementation of the Lorentz force in the code will be
discussed. First, the structure of the EM class and the place where the Lorentz
force is implemented will be discussed. Then, the actual implementation of the
Lorentz force will be discussed.

6.3.1 Electromagnetism in PLASIMO

In PLASIMO, the electro-magnetic calculations are handled by an EM class
and it derived classes. This class uses the plugins and settings provided by
the user to do an EM calculation for the plasma. A part of the structure is
shown in figure 6.4. The Lorentz force is implemented in a class em_uniform1d
that is derived from the base class plEM. All the classes that are derived from

6.3. IMPLEMENTATION IN THE CODEF 63

�� ���� � ��

� �	
�������� � �� ��

��� ������ !

"#$% &' ()

*+,-

./

0 0123

45

6789

:; <=

>?@A

BC

DE

FG HI

JKLM

NO

PQ

R RS

T TU V VW

XY

Z[\]

^_

`abc

de f fg

hijklmno

pq r rs

t tu

vw xy

z{

|} ~�

�� �� ��

����

�� ��

� ��

� ��

��

��

��

�� �� �� � ��

 ¡

¢ ¢£

¤ ¤¥

¦ ¦§

¨ ¨©

ª ª« «¬ ¬

® ®¯ ¯

Current not taken into account

Current taken into account

Control volume boundary

Highlighted control volume boundary

Magnetic field

Lorentz force

Figure 6.3: The Lorentz force exerted on a control volume (highlighted) . The
Lorentz force is only shown for the current on a few points. For the other points,
it also points inward. The Lorentz force is stored in the nodal point (not shown).

em_uniform1d can now calculate the Lorentz force and take it into account.
The results of the calculation are stored in plEM or em_uniform1d, and can be
accessed by PLASIMO from there.

6.3.2 The implementation of the Lorentz force

In this Section, the implementation of the Lorentz force theory in the code
will be discussed. The implementation is split in two files: em_uniform1d.h and
em_uniform1d.cpp. First, the header file em_uniform1d.h will be discussed;
then, the program body in em_uniform1d.cpp.

em_uniform1d

em_un_E_curr em_un_E_powerdensem_un_E_pow em_ind em_ac other

plEM

Figure 6.4: A part of the class structure of the EM calculation in PLASIMO.
The class in which the Lorentz force is implemented is highlighted.

64 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

Table 6.1: The names of the most important variables in the program and the
quantities they represent.
i A counter that counts in the z-direction
j A counter that counts in the r-direction
N1 The number of control volumes in the z-direction
N2 The number of control volumes in the r-direction
l The length in the z-direction of the grid element
r The length in the r-direction of the grid element
pl The position on the z-axis of the nodal point of the grid element
pr The position on the r-axis of the nodal point of the grid element
length The length of grid in z-direction
radius The length of grid in r-direction
area The area of the grid element.
F The Lorentz force
I The current through a control volume
J The current density through a control volume
sumI The current enclosed by the Ampère’s law control surface(Figure 6.2)

The header file

The program code of the header file can be found in appendix C. Calling
the member CalculateLorentzForce(void) calculates the Lorentz force. The
boolean m_calc_lorentz, supplied by the input file, determines whether the
Lorentz force is actually calculated, or is set to 0. Another quality derived
directly from the input file is m_lorentz_urf, which contains the underrelax-
ation factor used while calculating the Lorentz force. The φ-component of the
magnetic field is stored in CGridVar<REAL> m_B3. This way, other PLASIMO
modules can use it.

The body file

In the body file the actual calculation takes place. When the calculation
starts, the constructor is called. The constructor gets the values of m_calc_lor-
entz and m_lorentz_urf from the input file.

When the member CalculateLorentzForce(void) is called, the Lorentz
force calculation is started. If the boolean m_calc_lorentz is false, the Lorentz
force is set to zero.2 Otherwise, it is calculated. This calculation is started by
declaring a number of variables. The meaning of these variables is explained in
table 6.1.

The calculation is carried out by calculating the Lorentz force for increasing
values of r for one particular z value, and then repeating this procedure for
other values of z. When the calculation for one value of z is started, sumI is

2Note that just not calculating the Lorentz force and counting on the constructor to set it
to zero doesn’t work, because the values in the constructor may be overridden with a starting
condition. If the user decides to employ a starting condition that has a nonzero value of the
Lorentz force, it is not updated and stays at that nonzero value. This would mean that there
is a Lorentz force while the Lorentz force is turned off; an obvious error.

6.4. TESTING THE CODE 65

set to 0. Then, the Lorentz force calculation for the central control volume is
started. It starts by getting the length and the radius of the grid directly from
the grid class. Next, the length and radius of the control volume under study
are calculated.

The width of the control volume in r-direction and the position of the nodal
point are obtained from the grid class. Next, the area of the control volume
(see figure 6.2) is calculated. This is not trivial, as the control volumes at the
boundaries need special treatment. Next, the current through the volume is
calculated. The control surface covers only a part of the control volume: from
the beginning of the volume to the nodal point. This part is calculated. The part
of the volume covered by the control surface, x (PartCovered in the code), can
be calculated with equation (6.3). Equation 6.3 is exact if the nodal points are
in the middle of the control volume. This is the case if the grid is not stretched.
Then, sumI is increased by x times the current flowing through the control
volume. sumI now contains the current enclosed by the Ampère’s law control
surface. Now, Ampère’s Law (equation (6.2)) is used to calculate Bφ. Again,
the central control volume is excluded, as area of the control surface is 0. Next,
the magnitude of F ∗l is calculated using equation (6.5). The reason why F ∗l is
calculated rather than Fl, the Lorentz force is twofold: The Lorentz force per
volume rather than the Lorentz force needs to be calculated for incorporation
in the flow modules and it avoids potential problems with boundary control
volumes. The value of F now represents the Lorentz force. The rest of the
current through the control volume is now added to sumI. The calculation is
concluded by using the newly calculated Lorentz force update the value of the
Lorentz force. At this point the underrelaxation is incorporated.

When the calculation for the next control volume is started, sumI contains the
total current that went through the previous control volume. In this calculation,
it is again incremented by the current flowing through that control volume. This
way, the current inclosed by the control surface in Ampère’s Law can be obtained
quite easily and naturally.

A final point of note is the boundary condition near the axis. As explained
in the code, the Lorentz force has to be zero at the axis, but also at the control
volume next to the axis. The latter is a result of the way the Lorentz force is
incorporated in the momentum equation.

6.4 Testing the code

In this section, the code will be subjected to two tests. In the first test,
a totally artificial, but simple, and needed simulation will be run to compare
the results generated by the code with analytical results. In the second test, a
plasma in which some pinching can be expected (a cascaded arc) will be run
with and without a Lorentz force and the results will be compared.

66 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

6.4.1 Validation against an analytical solution

The code will be validated against an analytical solution. For this validation,
a simple model is taken: a plasma with an uniform conductivity and an uniform
electric field, and thus an uniform current I0. An analytical solution will be
derived for this special case, and it will be compared with the results.

Derivation of the analytical solution

The current enclosed by a circular control volume with an r smaller than the
radius of the plasma R, is then given by:

~Iencl = ~I
r2

R2
= ~Jπr2 (6.6)

with ~J the current density. If this current is substituted in equation (6.2), and
I0 is substituted for I, Equation 6.7 is obtained:

Bφ =
µ0I0r

2πR2
(6.7)

This can be used to calculate Bφ. With Bφ, the Lorentz force can be calculated.

The Lorentz force per unit of volume ~F ∗l is given by equation (6.4). With
a current only in the z-direction, equation (6.4) can be combined with equa-
tion (6.7) to get an expression of F ∗l (The component of ~F ∗l in the negative
r-direction) that depends only on J0 (The z-component of the current density
~J0), and r:

F ∗l =
µ0J

2
0 r

2
=

µ0I
2
0r

2π2R4
(6.8)

With a given I0 and R, (6.8) can be used to calculate F ∗l .

Calculations

For three different situations, the Lorentz force in the configuration has been
simulated with the Lorentz force module in PLASIMO. General features of the
model are described in above in section (6.4.1). Three cases are studied:

- Model 1 has r=0.05 m, I0=100 A (J=1.27·104Am−2)

- Model 2 has r=0.05 m, I0=10000 A (J=1.27·106Am−2)

- Model 3 has r=0.005 m, I0=100 A (J=1.27·106Am−2)

The magnetic fields calculated by the Lorentz module for these models and the
analytical value of the magnetic field are presented in figure 6.5. The match
between the analytical and numerical result is excellent for all points, as it
should be, because the implementation of the theory is exact for a grid in which
the nodal points lie in the middle of the control volumes, as is the case here.

The Lorentz module has also been used to calculate the Lorentz force for
these situations. These results are presented and compared to the theoretical
results in figure 6.6. This figure clearly shows that the analytical and numerical
results match excellently. This should be the case, because the implementation
of the calculation in PLASIMO is exact for this grid.

6.4. TESTING THE CODE 67

0.01 0.1 1
r/R [-]

1e-06

1e-05

0.0001

0.001

0.01

0.1

B
 [

T
]

100 A, 0.05 cm, theory
10000 A, 0.05 cm, theory
100 A, 0.005 cm, theory
100 A, 0.05 cm, PLASIMO
10000 A, 0.05 cm, PLASIMO
100 A, 0.005 cm, PLASIMO

Figure 6.5: The magnetic field calculated with PLASIMO compared to the
analytical solution for three different cases. On this double-logarithmic plot, it
can easily be seen that B increases linearly with the distance from the center of
the plasma. (A slope of 1 on a log/log plot means a linear dependence.)

0.01 0.1 1
r/R [-]

0.01

1

100

10000

F
l* [

N
 m

-3
]

100 A, 0.05 cm, theory
10000 A, 0.05 cm, theory
100 A, 0.005, theory
100 A, 0.05 cm, PLASIMO
10000 A, 0.05 cm, PLASIMO
100 A, 0.005 cm, PLASIMO

Figure 6.6: The Lorentz force calculated with PLASIMO compared to the an-
alytical solution for three different cases. On this double-logarithmic scale, its
can easily be seen that F ∗l increases linearly with the distance from the center
of the plasma.

68 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

6.4.2 Testing the Lorentz force for a cascaded arc

After having tested the Lorentz force for synthetic test cases (section 6.4.1),
it will now be tested for a real-life application of plasmas: a cascaded arc.
The reason the arc was chosen is that it has a relatively high current density
(4 · 107Am−2), which is hoped to produce a small, but clear, influence on the
results. First, a brief introduction to the cascaded arc will be given; then, the
results of a calculation of the arc with the Lorentz force module enabled will be
compared to a calculation of the arc with the Lorentz force module disabled.

The cascaded arc

The cascaded arc will not be described in detail here; a thorough explanation
of the simulation of a cascaded arc is described in [9]. The simulation used in
this case is similar, but not identical.

The model consists of a cylindrical grid that has a radius of 2 mm and is 6 cm
long. The north boundary consist of a wall, that cools the plasma to Th=500
K and Te=6000 K, the east boundary is the outlet, at which a velocity which
can be typified with a Mach number of 1 is set, the south wall is the symmetry
axis, and the west wall is the inlet, through which 100 SCCS of Argon flows.
The current of 50 A is in the z direction, and it is supplied by an uniform E-
field. The only reaction taken into account is the ionization of argon. A NLTE
treatment is used; thus, a complex system of φ-equations is used to determine
the composition, although the source term (ionization of argon) is simple.

Two versions of this model are made: in the first, the Lorentz force is not
taken into account; in the second, it is. If there is a difference between these
models, it will be caused by the Lorentz force.

Results

A cascaded arc has been simulated with PLASIMO with and without a
Lorentz force. The results will be compared. First, a graph of the Lorentz
force density in the middle of the arc (z=3cm) will be presented in figure 6.7.
The Lorentz force density rises when going outside from the center of the arc,
just like in figure 6.6. Unlike the plasma in figure 6.6, the Lorentz force density
reaches a maximum, and then drops again. This is because the conductivity
is higher in the center, because the temperature is higher there. In combina-
tion with a uniform E-field, this means that the current drops near the edges.
Because the B-field is inversely proportional to the radius and proportional to
the current 6.2 enclosed, these two competing effects may cause a maximum to
form.

The Lorentz force causes a compression of the plasma. This causes the pres-
sure in the center of the plasma to become higher than the pressure at the edges.
This can be seen in figure 6.8. It is clear that the pressure gradient is larger
when the Lorentz force is enabled. The pressure drop from center to wall for
the arc is 20 Pa larger if the Lorentz force is enabled. If the Lorentz force is

6.4. TESTING THE CODE 69

0 0.0005 0.001 0.0015 0.002
r [m]

0

5000

10000

15000

20000

F
l* [

N
 m

-3
]

Figure 6.7: The Lorentz force density in the middle of the cascaded arc. It is
pointed in the negative r-direction, thus compressing the plasma.

integrated over the radius, the calculated pressure increase is 15 Pa. This is in
reasonable agreement with the pressure increase obtained by PLASIMO.

It has been attempted to simulate plasmas that have even larger larger Lorentz
forces. It is generally possible to go to higher values of the Lorentz force. How-
ever, when the Lorentz force becomes a dominant factor in the problem, the
convergence becomes troublesome.

As a final remark, it is noted that the plasma is not significantly magnetized.
This can be seen by taking the maximum value of the magnetic field (5 mT)
and calculating the Larmor frequency [1] for the electrons:

ωl =
|q|B
me

(6.9)

which yields a frequency of 8.8·108 Hz. The electron-neutral collision frequency
can be estimated with [15]; for this plasma, it is about 3·109 Hz. The electron-
ion collision frequency νei is given by

νei = 4πni

(
3πMi

8kBTi

) 3
2
(

Ze2

4πε0me

)2

ln

(
4π
3

(ε0kBTe)
3
2

e3
√
ne

)
(6.10)

Here, Mi is the ion mass and Z is the ion charge. This expression, combined
with the results from PLASIMO, gives an νei of 2 · 1010 Hz. The sum of these
frequencies is much larger than the Larmor frequency, meaning that the electrons
collide so often that they do not follow the magnetic field lines.

70 CHAPTER 6. IMPLEMENTING PINCHING IN PLASIMO

0 0.0005 0.001 0.0015 0.002
r [m]

36220

36230

36240

36250

36260

p
[P

a]
No Lorentz Force
With Lorentz Force

Figure 6.8: The pressure profile of a cascade arc at z=3 cm. The simulation
has been carried out for two settings, one with a the Lorentz force enabled and
the other with the Lorentz force disabled. has been carried out while taking the
Lorentz force into account and also while not taking it into account.

6.5 Conclusions

The Lorentz force has been implemented as a bulk force. This is an adequate
approach if the reactions in the plasma are sufficiently fast, so the Lorentz force
does not cause large deviations in the composition of the plasma. The approach
is currently only valid for a cylindrical geometry. For this geometry, it has been
tested for an artificial situation. The results agreed with the theory. It has also
been tested in a cascaded arc. In this case, the results were consistent with the
estimations based on the Lorentz force theory.

In order to simulate plasmas in which pinching becomes dominant, it may be
necessary to make further additions to the code. A stronger coupling between
the Lorentz force and the pressure may help convergence. Also, it may be
necessary to take into account the effect of magnetization on the transport
coefficients. This will require the use of anisotropic transport coefficients which
are not yet implemented in PLASIMO.

Chapter 7

Simulating plasma decay in
a hollow cathode discharge

7.1 Introduction

In this section, the decay of the plasma in the hollow cathode will be modeled.
For this, a substantial extention to the diffusion calculation in PLASIMO must
be constructed, because Fick’s law of diffusion does not hold for pressures as
low as in the hollow cathode, as we will see. When this extention is made, a
model of the decay of the hollow cathode can be assembled using PLASIMO.
This model can then be used to simulate the decay of the hollow cathode.

7.1.1 Diffusion

Diffusion to the walls is a common loss process of electron-ion pairs in dis-
charges, in particular those at low pressure and of small dimensions. For most
discharges, the classic diffusion theory, enhanced to account for ambipolar dif-
fusion, is a good approximation.

Diffusion theory breaks down, as will be explained below, when the mean
free path of particles becomes of the same magnitude or larger than the size
of the vessel. In the regime where the mean free path is much larger than the
typical dimensions of the vessel, Knudsen free molecular flow theory can be
used to describe the electron-ion drift to the wall. In the intermediate regime, a
combination of both methods should be used. In this chapter, an approximate
this will be presented, implemented, and validated.

7.1.2 Contents of this chapter

In section 7.2, the theory will be outlined. Diffusion and Knudsen flow will be
treated, and a model by Mason and Malinauskas [16] to incorporate them both
simultaneously is presented. In section 7.3, the implementation of this theory in
PLASIMO will be discussed. In section 7.4, the improved treatment of diffusion
and Knudsen flow will be applied to a hollow cathode discharge, which operates
at the boundary of the two regimes. This means, that neither can be neglected,

71

72 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

Figure 7.1: A schematic, kinetic view on diffusion. The random motion of
particles will eventually create equal densities of the species under consideration
(the black dots) on the left and right. The molecules collide more frequently with
the background gas than with the vessel walls. This means that the effective
distance they travel is determined by a random-walk process. This distance is
proportional to the square root of the time.

requiring the full combined diffusion/Knudsen flow model. Analytical solutions
will be used to validate the answers. In section 7.5 it will be investigated what
a good model for the hollow cathode is. In section 7.6, the influence of a few
parameters will be investigated by varying them. In section 7.7, the conclusions
will be presented.

7.2 Theory

7.2.1 Diffusion

Diffusion is the movement of particles through a background medium, here a
gas, driven by a concentration gradient. This effect is illustrated by Figure 7.1,
which shows that diffusion is related to the random walk of molecules. The result
is that differences in concentration will be minimized. In the case of Figure 7.1,
the diffusing species has a higher density on the right than on the left. This
means, that the random motion of the particles will cause more particles of this
species to go from right to left than form left to right. In the end, this will cause
equal densities left and right.

The temporal change in the density N of a species due to diffusion through
a background gas is given by [17]. This is in fact a particle balance without

7.2. THEORY 73

sources.
∂N

∂t
= −~∇ · ~Γ = ~∇ · (Ds

~∇)N (7.1)

Here, Ds is the diffusion coefficient, t the time and ~Γ the flux. Notice that
the diffusion time scales with the square of the length. This can be seen by
approximating the derivatives with divisions, yielding:

1
t
∝ Ds

1
L2

(7.2)

This scaling is consistent with the random walk of molecules, where the
effective distance traveled scales with the square root of time.

Ambipolar Diffusion

In this chapter, we are interested in diffusion in plasmas. Plasmas contain
electrons and ions. These cannot diffuse independently, as this would cause very
large space charges and thus electric fields to be build up. As a consequence,
electrons and ions will be pulled to each other. This means, that they cannot
get apart too much. This process is known as ambipolar diffusion. The lighter,
and often hotter, electrons are much more mobile than the ions. They diffuse
faster, and thus pull the ions with them. In this case, the plasma diffuses with
an ambipolar diffusion coefficient Da that is equal to [17]:

Da = Di

(
1 +

Te
Th

)
(7.3)

Here, Di is the ion diffusion coefficient, Te is the electron temperature and Th
is the heavy particle temperature.

7.2.2 Knudsen flow

The failure of diffusion theory

In order to explore the boundaries of the validity of the diffusion theory out-
lined in section 7.2.1, some attention will be paid to the diffusion coefficient Ds

for which we follow the derivation given in [14]. The result is:

Ds =
π

8
λ2ν (7.4)

Here, λ is the mean free path and ν it he collision frequency between the diffusing
species and the background gas 1. Using

λ =
vth
ν

(7.5)

with vth the thermal velocity, equation (7.4) can be rewritten to

Ds =
π

8
λvth (7.6)

1The prefactor in (7.4) is consistent with using an average thermal velocity vth =
√

8kBT
πm

;

it is also common to use the root mean square thermal velocity vth =
√

3kBT
m

; this gives a

prefactor of 1
3

. The actual value should be obtained by integrating over the velocity distribu-
tion

74 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

Normally, the mean free path λ depends on the density N and the cross section
σ [14]:

λ ∝ 1
Nσ

(7.7)

Here, σ is the cross section. This equation is valid when the mean free path
is determined by collisions with background gas particles. When N becomes
very small (low pressure), the mean free path predicted by equation (7.7) will
get very large. It may thus become larger than the typical dimensions of the
vessel. This means the particles will collide more often with the wall than with
the background gas. The collisions of the particles with the wall cause the size
of the vessel places to place an effective maximum on the mean free path. Here,
the diffusion theory breaks down. Qualitatively, (7.6) changes to

Dk ∝ Lvth (7.8)

with Dk an effective diffusion coefficient. This gives a typical scaling in this
regime of:

1
t
∝ Dk

1
L

(7.9)

as opposed to the scaling for diffusion in (7.2).

Knudsen flow

Knudsen flow, in contrast to diffusion, is the free movement of particles, un-
hindered by the background gas. This will be explained using Figure 7.2.

Figure 7.2 is similar to figure 7.1. On the right there are more particles than
on the left. Due to the random motion of the particles, more particles will go
from the right to the left than form the left to the right; thus, eventually, the
amount of particles will become equal on the left and right side.

The main difference between Knudsen flow and diffusion is the way the par-
ticles move through the vessel. With Knudsen flow, the particles are essentially
free to move through the vessel, whereas in the diffusion case, the particles de-
scribe a random walk through the background gas. In the case of free movement,
the particles travel a distance that is proportional to their speed and time. In a
random-motion case, the distance is proportional to their speed and the square
root of time.

After this kinetic explanation, the equations that describe Knudsen flow will
be discussed. The flux corresponding to a Knudsen flow Γ from a gas to a
vacuum is given by [16]:

Γ = wvthN (7.10)

with w a dimensionless probability factor and vth the average thermal velocity.
The particle balance (7.1) can be rewritten to

∂N

∂t
= −wvth~∇N · ~e (7.11)

with ~e the unit vector normal on the surface through which the diffusion takes
place.

7.2. THEORY 75

Figure 7.2: A schematic, kinetic view on Knudsen flow. The random motion of
particles will eventually create equal densities of the species under consideration
(the black dots) on the left and right. The molecules collide more frequently with
the vessel walls than with the background gas. This means that the effective
distance they travel is not determined by a random-walk process, because the
mean free path is much larger than the distance the particles must travel to
cross the vessel. This distance is therefore linearly proportional to the time.

For an infinitesimally thin orifice, a canonical example of Knudsen flow, w is
1
4 . This factor comes from the fact that not all particles travel in the direction
of the plane. It can be rigorously derived by integration over the Maxwell
distribution. The Maxwell distribution is given by [14]:

f(~v) =
(

m

2πkBT

) 3
2

e

(
− mv2

2kBT

)
(7.12)

with f(~v) the particle density in velocity, m the mass of the particle and T
the temperature. The average velocity in the positive vz direction vzcan be
obtained by integrating vz over half of the velocity space (only the positive half
contributes), weighed with f(~v). This can then be used to calculate the flux.
This gives the integral [14]

Γz = N

(
m

2πkBT

) 3
2
∫ 2π

0

dφ
∫ π

2

0

cos θ sin θdθ
∫ ∞

0

e

(
− mv2

2kBT

)
v3dv (7.13)

Here Γz represents the effective fraction of particles passing through the z=0
plane. Evaluating this integral yields that

Γz = N
1
4

√
8kbT
πm

=
1
4
Nvth (7.14)

76 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

with N the thermal velocity. The prefactor of 1
4 is the result of the integrations

over φ and θ, while the factor of
√

8
π comes from the integration over the velocity.

It is customary to use a Knudsen diffusion coefficient Dk, analogous to a
standard diffusion coefficient, to describe the loss process due to Knudsen flow.

∂N

∂t
= ~∇ · (DK

~∇N) (7.15)

This equation can, contrary to (7.11) be cast into a φ-equation form. The
Knudsen diffusion coefficient depends mainly on vth. This can be made explicit
by expressing it as:

Dk =
4
3
K0vth (7.16)

The Knudsen factor K0 is difficult to calculate from first principle for a practical
geometry. It is of the order of magnitude of the typical vessel dimension. If
equation (7.11) and (7.16) are to be consistent, K0 should be taken as

K0 = fKnΛ =
3
16

Λ (7.17)

with Λ the gradient length of the density. The factor fKn is a geometry factor.
The astute reader will notice that this implies an anisotropic diffusion coefficient,
as Λ is generally not the same for all directions. As the Knudsen diffusion is
determined by plasma-vessel interactions rather than plasma-gas interactions,
the generally anisotropic vessel may introduce anisotropies not introduced by a
background gas.

Ambipolar Knudsen flow

In a plasma, the electrons and ions generally do not diffuse independently, as
this would cause huge space charges. Instead, the electrons pull the ions with
them. The same thing goes for Knudsen flow. This is taken into account by
using the Bohm velocity. The Bohm velocity is basically the ion thermal velocity,
calculated substituting the electron temperature for the ion temperature 2. This
is analogous to the treatment of the sheath in [14]. This way, a consistent
description of vessel and wall can be achieved.

7.2.3 The resistor model

In [16], a model is given that can be used to account for both Knudsen and
diffusion at the same time. In this model, diffusion and Knudsen flow are both
considered a resistor with a value 1

D , with D the appropriate diffusion coeffi-
cient.3 These resistors are put in series. This means that a particle is hampered

2One could consider whether the ion thermal velocity should also be taken into account,
for instance by substituting the ion temperature with the sum of ion temperature and electron
temperature. This has not been done, for two reasons: 1. It is consistent with PLASIMOs
treatment of the sheath. 2. The difference is small, as plasmas in the Knudsen flow regime
are likely to be very far from LTE, so the ion temperature is much lower than the electron
particle temperature.

3The diffusion coefficient is the analog of a conductance, while a resistor is the analog of a
friction.

7.2. THEORY 77

in its movement by both of these effects. Basic electricity theory yields the
effective resistance 1

Df
of two series resistors. The effective conductance Df is

given by:

Df =
DsDk

Ds +Dk
(7.18)

It can easily be seen that this expression yields the correct results for the limiting
cases where only one of the processes is significant.

7.2.4 An analytical approach to the decay in the hollow
cathode

In order to validate our model, we will compare the results generated by
PLASIMO and the results obtained analytically. In this section and appendix
D, an analytical solution will be derived, using an analytical description of the
decay in a cylindrical vessel.

Generally, the drop in the electron density ne as a result of diffusion in such
a vessel is described by this equation:

∂ne
∂t

= ~∇ · (D~∇ne) (7.19)

with D a diffusion coefficient, of which the value will be specified later. This
value depends on the conditions. For example, (7.18) could be used. The
boundary conditions are that the ions and electrons move unhampered to the
wall with the Bohm velocity. This takes into account the fact that the hot,
fast electrons pull the heavy, slow ions. Because this velocity is very high and
because the distance traveled is short, it is assumed that this does not slow
down the rate of diffusion. Thus, the density at the wall is set to 0.4 5 If the
positions of the walls are at r = br and z = bz, then the boundary conditions at
the walls are:

ne(br, z, t) = ne(r, 0, t) = ne(r, bz, t) = 0 (7.20)

The last boundary condition comes from the symmetry axis:

∂ne(0, z, t)
∂r

= 0 (7.21)

To solve equation (7.19), the assumption will be made that the diffusion coef-
ficient is constant and equal to Df (cf. (7.18)), which can be calculated using
the theory of diffusion and Knudsen flow outlined above. This changes equation
(7.19) to:

∂ne
∂t

= (Df
~∇2ne) (7.22)

4While this is called the ”density at the wall”, this is actually a bit misleading. The domain
stops just before the physical walls.

5For most plasmas, this is a fine approach, as the diffusion to the wall is much slower than
the free fall through the sheath. However, the plasma currently under study is also near the
free fall regime; thus, in this case, the wall density may be fairly large. This is an obvious flaw
in the analytical approach. See Section 7.4 for a better treatment of the wall. This treatment,
unfortunately, is too complex to use in an analytical model

78 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

This is a standard problem, which is easily solved. The solution is derived in
appendix D. The result is:

τ =
1

Df

((
2.40
br

)2 +
(
π
bz

)2) (7.23)

7.2.5 Conclusion

As explained in subsection 7.2.2, the description of Knudsen flow is approxi-
mate. Therefore, the results of the Knudsen flow calculation are likely to be less
accurate than the results of the diffusion calculation. However, they are still
extremely valuable. When used in the resistor model, it prevents the effective
diffusion coefficient from reaching unphysically large values, which would yield
erroneous results in the calculation.

7.3 ImplementationF

7.3.1 The design criteria

In section 7.2, a new method was proposed to extend the validity region
of classical diffusion theory. The new plKnudsenDiffusion class should do a
calculation of the diffusion coefficient, based on the theory of section 7.2. It is
the aim to make this calculation as general as possible. The class should be able
to calculate either the Knudsen diffusion coefficient, or the classical diffusion
coefficient, or the effective diffusion coefficient that results when both are taken
into account. This allows the user to select which process he wants to use, giving
the user a freedom he never had in an experiment.

Furthermore, a choice should offered to use ambipolar or standard diffusion.
Standard diffusion occurs in nonionized gasses, where the electrons cannot influ-
ence the diffusion of the heavy particles. The same choice is offered for Knudsen
diffusion: the thermal speed should be selected for a gas, while the Bohm ve-
locity is appropriate for a plasma. These two choices can be made by the user
by using the input parameters.

Another input parameter is the geometry factor, which would be supplied by
the user. The module does not calculate it for the user, instead, the user is free
to choose the value he deems most appropriate.

The final input parameter is the diffusion length. While this is normally equal
to half the smallest plasma dimension, this is not always true. Therefore, the
user is free to choose a value.

Summarizing, the plKnudsenDiffusion class should take as input parame-
ters:

- The geometry factor

- The diffusion length

7.3. IMPLEMENTATIONF 79

- The type of diffusion (Disabled6, Ambipolar or Standard)

- The velocity to be used for Knudsen flow. (Disable Knudsen flow, Bohm
velocity or thermal velocity)

It should use these parameters to calculate a value for the diffusion coefficient.

7.3.2 The code

When implementing this in PLASIMO, the modular structure of PLASIMO
allowed the reuse of very large pieces of code, making this a relatively simple
task.The plKnudsenDiffusion class is a derived class from plAmbipolarDif-
fusion. Thus, all the code of the diffusion is readily available and does not need
to be reprogrammed. The input parameters are processed by the input parser.
The appropriate calculation is made using these input parameters.

The implementation will be explained, using the source code of the plKnud-
senDiffusion class, which is presented in appendix E.

The code starts with the constructor. This constructor first sets the size of
a few vector members of the class. Then it calculates K0 from the data in the
input file using (7.17). After this, it translates the different modes of diffusion
and Knudsen flow to two numbers: m_DiffusionMode and m_KnudsenMode. A
parser exception will be thrown if one tries to disable both diffusion and Knudsen
flow as this would be totally unphysical and fatal for the calculation.

Next, the virtual function DoCalculate is declared. This does the actual
calculation. The private member m_ParticleMasses stores the particle masses,
m_DDiffusion stores the diffusion coefficients (one for each species) and m_DKnudsen
the Knudsen flow coefficient (again, one for each species). The real number m_K
is K0. The members CalculateDDiffusion and CalculateDKnudsen calculate
the diffusion and Knudsen flow coefficient, respectively.

After the declarations, the actual implementations of the functions follows.
The public member DoCalculate does the calculation of the diffusion coefficient.
If both diffusion and Knudsen flow are enabled by the user, these both get
calculated. After that, they are “added” as in equation (7.18). If diffusion is
disabled, only Knudsen flow gets calculated. If Knudsen flow is disabled, only
diffusion gets calculated.

CalculateDDiffusion calculates the diffusion coefficient. It either uses am-
bipolar diffusion or standard diffusion, depending on the users’ choice.

CalculateDKnudsen calculates the Knudsen flow coefficient. Based on the
type of particle and the type of diffusion to be used, either the thermal velocity
of the particle (when the thermal velocity mode is used for all particles or only for
the neutral particles in the Bohm velocity mode) or the electron temperature (in

6This disables the limitation of the loss rate by diffusion; diffusion losses are infinitely fast.
This is only meaningful when Knudsen flow is enabled.

80 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

case of ions when Bohm velocity is used). Next, the mean velocity is calculated.
This is then used in equation (7.16) to calculated the Knudsen flow coefficient.

7.4 Validation

7.4.1 Introduction

In this section, the code will be validated by applying it to a model of the
decay in a hollow cathode. A wide range of models could have been used, the
hollow cathode is chosen for convenience, as a model for the hollow cathode is
needed later anyway. First, an over-simplified model of the hollow cathode dis-
charge will be made. This model will be discussed in section 7.4.2. The various
Knudsen submodels will be verified by running this simple model of a hollow
cathode discharge for the various options provided by the plKnudsenDiffusion
class in section 7.4.3. The resulting diffusion coefficient is then compared to an-
alytical calculations of that diffusion coefficient. This is in fact the main point
of this validation, as the only thing added to the code is a new way of calculat-
ing the diffusion coefficient. After validating the model this way, the diffusion
time, calculated from an analytical model, will be compared to the diffusion
time from numerical results. The conclusions will be presented in section 7.4.4.
The insights gained in this chapter will be used in chapter 7.5 to construct an
accurate model of the hollow cathode discharge.

7.4.2 A simple model for the decay in the hollow cathode
discharge

The system under study is a hollow cathode discharge. Here, only the hollow
cathode part of the device will be studied. It consists of a cylinder with a height
of 16 mm and a radius of 16 mm. This device is filled with 10 Pa of Xe, through
a hole in the top. (See figure 2.1). This hole has a diameter of 4 mm. In
this case, however, the hole is treated as a normal wall. This is done to let
the numerical and the analytical model be a similar as possible. The plasma is
estimated to have an electron density of 1.1·1020 m−3. The electron temperature
is estimated at 8000 K, while the gas temperature is estimated at 1000 K. The
wall temperature is set equal to the heavy particle temperature. Thus, the
boundary condition for Th is a Constant Dirichlet condition with a temperature
of 1000 K. For the electron temperature, the boundary temperature is set to
8000 K. In reality, the electron temperature is not set by the wall. By doing
this, we keep the diffusion coefficient, that depends on Te, constant during the
simulation. For the Knudsen flow, the geometrical factor fKn is estimated at
0.1875 7, while the gradient length is set to 8 mm. The simulation is performed
on a 40 by 40 grid; this means the control volumes are rings with a square cross
section. Setting the ion density at the wall to 0 m−3, similar to the approach
used in the analytical model, did not work in practice; instead, a very fast loss
process was specified at the wall, by speeding up the normal loss process, where

7One might be tempted to set fKn to 0.375 to account for Knudsen flow in two directions.
This is, however, not correct, because this effect is already incorporated in the simulations,
and taking it into account twice will yield an erroneous result.

7.4. VALIDATION 81

Table 7.1: The diffusion coefficient Df in ms−2, as calculated by PLASIMO,
compared to the theoretical value. The different ways of calculating the diffusion
coefficient are in separate columns, whereas the different ways of calculating the
Knudsen flow coefficient are placed in separate rows. The standard diffusion
coefficient is the diffusion coefficient that is obtained when the electric attraction
between ions and electrons is ignored.

disabled ambipolar thermal
PLASIMO analytical PLASIMO analytical PLASIMO analytical

disabled - - 1.68 1.70 1.87 · 10−1 1.88 · 10−1

Bohm 2.27 2.30 9.9 · 10−1 9.6 · 10−1 1.7 · 10−2 1.8 · 10−1

thermal 8.1 · 10−1 8.4 · 10−1 5.4 · 10−1 5.4 · 10−1 1.5 · 10−1 1.6 · 10−1

ions and electrons recombine with a speed limited with by the Bohm velocity
with a factor of 20.

7.4.3 Results of the validation

The three possible diffusion modes (disabled, ambipolar and standard) have
been combined with the three Knudsen flow modes (disable, Bohm velocity and
thermal velocity). The models are started up, and tracked until the central
electron density drops to 1 · 1014 m−3. The time to reach various densities has
been recorded, as is Df .

The diffusion coefficient

The value of Df of Xe+ has been recorded when the Xe+ density is 1 · 1019

m−3. This has been compared with a theoretical value of Df , calculated using
the equations in section 7.2. Table 7.1 shows that the values of Df calculated
with PLASIMO closely match the values calculated with theory. This is an
indication that the theory is implemented correctly. Note that the new class
solely calculates the diffusion coefficient. This means that the diffusion coef-
ficient is the key parameter to be checked in the validation; the other results,
while interesting, are less relevant for checking whether the diffusion calcula-
tor is implemented correctly, but rather for showing flaws in the model and
illustrating the difference between the various diffusion calculator options.

Decay times

The decay process for these eight modes has been graphically displayed in
figure 7.3. It shows that the decay is mainly exponential, which is consistent
with both equation 7.1 and 7.15. Note that there are deviations from this
behavior during the beginning of the decay. These are caused by three effects:

- The dissimilarity between the flat starting profile and the parabolic profile
in the z-direction and the Bessel profile in the r-direction caused by dif-
fusion. It takes time to build up this profile, and in this time, the central
density does not drop. This is related to the fact that the higher-order
modes decay first (appendix D).

82 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 1e+21

n
e
 [m

-3
]

0

200

400

600

800

1000

1200

t [
µs

]
disabeled, Bohm
disabeled, thermal
ambipolar, disabeled
ambipolar, Bohm
ambipolar, thermal
standard, disabeled
standard, Bohm
standard, thermal

Figure 7.3: The decay in the hollow cathode, calculated by various methods.
In the legend, the first word refers to the method used for calculating diffusion,
the second word refers to the method used to calculate Knudsen flow.

- A significant part of the plasma is ionized. This means that there are less
particles that hamper diffusion, and therefore, the diffusion coefficient will
be larger, causing a faster drop.

- The wall condition is not an homogeneous Dirichlet condition; instead, a
very fast loss process is specified. This does mean, that the loss will be
slowed somewhat by the time this loss process takes.

The results clearly show that the first effect is the most important effect; the
decay is much slower during the initial stages. The decay is very slow when stan-
dard diffusion is used. This is consistent with the fact that standard diffusion is
much slower than ambipolar diffusion in this case. The results from ambipolar
diffusion, which are a better description of reality than standard diffusion, show
that the Knudsen flow process has a significant impact on the decay time, but
also that the Knudsen flow is not the dominant process.

The values of τ , obtained by PLASIMO, are compared to the results of the
analytical approach presented in section 7.2.4. The result of both these calcula-
tions can be found in table 7.2. Table 7.2 clearly shows that the diffusion time
calculated with PLASIMO is generally larger than the diffusion time calculated
with the analytical model. This is caused by the boundary condition. This has
been investigated by modifying the model so that it uses the aforementioned
boundary condition, but the ions and electrons flow to the wall with 20 times
the rate determined by the Bohm velocity. The results generated by this model
are quite close to the analytical results, where the density at the boundary is

7.5. THE MODEL USED FOR THE HOLLOW CATHODE 83

Table 7.2: The decay time τ in s, as calculated by PLASIMO, compared to the
theoretical value. The different ways of calculating the diffusion coefficient are
in separate columns, whereas the different ways of calculating the Knudsen flow
coefficient are in separate rows.

disabled ambipolar standard
PLASIMO Analytical PLASIMO Analytical PLASIMO Analytical

disabled - - 1.0 · 10−5 5.5 · 10−6 5.9 · 10−5 5.0 · 10−5

Bohm 8.6 · 10−6 4.14 · 10−6 1.47 · 10−5 9.6 · 10−6 6.2 · 10−5 5.5 · 10−5

thermal 1.68 · 10−5 1.14 · 10−5 2.27 · 10−5 1.63 · 10−5 7.8 · 10−5 7.3 · 10−5

fixed at 0. This indicates that the loss processes are calculated correctly from
the diffusion coefficient. The effect of the different boundary condition is large
when the diffusion time is short; this is to be expected, as the process at the
wall is relatively fast, and the additional slowing it causes is likely to relatively
small if the diffusion/Knudsen flow process is slow.

7.4.4 Conclusion

The fact that the diffusion coefficients calculated with the Knudsen submodel
match the analytical values of these coefficients almost exactly indicates that
the theory is indeed implemented correctly.

The differences in the decay time found while comparing the analytical result
with the results from the model provide insight in the flaws of the analytical
approach.

7.5 The model used for the hollow cathode

Now the code has been validated by this procedure, the best model of the hollow
cathode will be determined. In section 7.4, a model of the hollow cathode is
suggested, based on the physics of the problem. This model is oversimplified,
and a number of aspects were not treated correctly. These include:

- The validation has been performed for various diffusion calculators. For
the model, the one that matches the physics best has to be determined.

- The boundary condition has to be improved.

- A suitable treatment for the borehole has to be determined.

- The effect of the dropping particle densities and temperatures on the pres-
sure has to be dealt with.

- Finally, the effect of not fixing the electron temperature must be studied.

Here, these aspects will be discussed, and based on this discussion, and the
model presented in chapter 7.4.3 a model of the hollow cathode will be made.

84 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

7.5.1 The diffusion calculator

In section 7.4, the calculation has been performed for any combination of dif-
fusion and Knudsen flow calculators available. Not all of those are physically
significant. All options will be discussed here.

- Amipolar diffusion, no Knudsen flow: This is a good way to treat a dense
plasma, where the mean free path is much shorter than the vessel dimen-
sions.

- Standard diffusion, no Knudsen flow: A good treatment for normal gases
if the mean free path is much shorter than the vessel dimensions.

- No diffusion, Bohm velocity Knudsen flow: In the regime where the mean
free path is very long compared to the vessel dimensions, this could be
a feasible treatment. However, the Knudsen flow treatment is not very
accurate. A PIC model is a much better approach for situations like this.
Therefore, this treatment is not recommended.

- Ambipolar diffusion, Bohm velocity Knudsen flow: This model takes into
account both the diffusion process and the Knudsen flow process. It gives a
treatment that is valid over a very large parameter range. It is the default
treatment for a plasma. This treatment is especially good if diffusion is
still the most important, but Knudsen flow cannot be neglected. In that
case, the additional treatment of Knudsen flow improves the calculation,
while the inaccuracies in the Knudsen flow treatment do not contribute
much to the overall inaccuracy, because Knudsen flow is of relatively minor
importance.

- Standard diffusion, Bohm velocity Knudsen flow: This model takes the
ambipolar field into account for Knudsen flow, but not for diffusion. This
is generally not an approach that makes sense. Therefore, it should not
be used.

- No diffusion, thermal Knudsen flow: This model only takes Knudsen flow
into account. It could be used for a nonionized gas, but there are much
better approaches to that problem, such as PIC codes.

- Ambipolar diffusion, thermal velocity Knudsen flow: This model has little
physical basis, as it takes the ambipolar field into account only for diffusion
and not for the Knudsen flow.

- Standard diffusion, thermal velocity Knudsen flow: This is an appropriate
approach for gases. It is valid over a wide parameter range.

The approach that uses ambipolar diffusion and Bohm velocity Knudsen flow is
used for the rest of the models. This is because it is valid for all the parameter
ranges used in the models.

7.5.2 The boundary condition

The exact mixture boundary condition also deserves attention. The easiest
approach is setting the electron density at the wall to zero, and using the Knud-
sen module to calculate the flux to the wall. However, in practice, the density

7.5. THE MODEL USED FOR THE HOLLOW CATHODE 85

at the wall changes stepwise. Using a differential approach (equation (7.15)) in
a situation where a derivative is not defined is not likely to give good results.
Therefore, an approach that uses equation (7.10) is preferred.

In this approach, the particle density at the wall is determined by the free
flow of particles that are close to the wall. For an isotropic velocity, this means
that the flux to the wall Γ is equal to

Γ =
1
4
PvzN (7.24)

However, if the chance P of a reaction is close to 1, virtually no particles will be
coming back from the wall. In an environment where particle-particle collisions
are rare, such as the hollow cathode, this means that the velocity distribution
is not isotropic. It will be assumed that velocity distribution is similar to the
isotropic case, only with vz always positive. This changes the f(v), by giving it
a normalization factor that is twice as large. When this expression is integrated,
the result is:

Γz = 2N
(

m

2πkBTe

) 3
2
∫ 2π

0

dφ
∫ π

2

0

cos θ sin θdθ
∫ ∞

0

e

(
− mv2

2kBTe

)
v3dv =

1
2
Nvb

(7.25)
The extra factor of two is caused by the renormalization. The thermal speed is
replaced by the Bohm velocity vb to account for the field over the sheath.

7.5.3 The borehole

The treatment of the borehole deserves special attention. On the other walls,
it is assumed that the plasma diffuses with the Bohm velocity and recombines
at the wall. In the borehole, this wall is absent. The obvious choice would
be to implement an homogeneous Neumann boundary condition. This would
effectively disable diffusion from the hollow cathode to the borehole. Because
the borehole has a lower electron density, caused by faster diffusion, this is not
accurate. An alternative is to assume that the density in the borehole is so low
that effusion of ions and electrons from the borehole to the cathode is negligible
compared to diffusion from the cathode to the borehole. This would give us
that the plasma diffuses with the Bohm velocity to the wall, similar to the other
walls. It will also be assumed that when an electron-ion pair diffuses out, a
neutral will effuse back in.

In order to investigate which treatment is better, the decay of the borehole
has been modelled to find its decay time τb. It has been assumed that influx
and efflux of particles through the top and bottom cancel, in order to eliminate
these effects. The decay time is 7.7 µs, which is much shorter than the decay
time of the hollow cathode (24.5 µs) Thus, the electron density in the borehole
will be much lower than the density of electrons in the cathode for the largest
part of the decay. This means that the second treatment, in which the effusion
of electron-ion pairs is not compensated by effusion of an electron-hole pair from
the borehole back into the cathode is a better approximation.

86 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

If the first treatment is used, the decay time is 25.9 µs rather than 24.5 µs
when the second treatment is used. This is not a very large error compared
to the errors introduced by the unknown electron temperature, the uncertainty
in the Xe mobility, etc. Therefore, the second treatment will be used, without
further modification to obtain the actual answer, which lies between the two
extremes.A simultaneous treatment of both borehole and cathode is beyond the
abilities of our code. While the physics is in it, the geometry is too complex for
our code.

7.5.4 The pressure in the hollow cathode

Another point of attention is the pressure in the hollow cathode. It is assumed
to be 10 Pa. When the hollow cathode region is significantly ionized (> 10%),
this means that a large part of this pressure comes from electrons, as the pressure
p depends on

p = nkBT (7.26)

with T the temperature of the particles. For electrons, the temperature is much
(about a factor 10) higher than for the heavy particles. This means, that when
the electrons get lost due to recombination, the pressure will drop. This will
cause flow from the anode region through the borehole into the cathode region.
In principle, one should take this flow into account. This has a number of
practical problems:

- The problem cannot be approximated with the common fluid approach.
This approach does not hold in a Knudsen regime, which is the regime in
which the cathode is.

- The problem cannot be solved reliably and fast by our present PLASIMO
code. It is thought that the weak coupling between flow equations and
the other equations is responsible. This problem is similar to the problem
encountered while implementing the Lorentz force (Chapter 6).

It has been attempted to simulate this situation; convergence problems made
this practically impossible. Therefore, the following choice is made: it is assumed
that the amount of particles in the volume is constant and has a density that
sets the pressure to 10 Pa when the gas is not ionized and has a temperature of
1000 K. This means, that the pressure during the beginning of the calculation is
much higher than 10 Pa. This causes the model to predict a diffusion coefficient
that is too low. This effect is small when the decay is to a very low (e.g. 1 · 1014

m−3) electron density, because in that case the actual and simulated pressure
differ only slightly for the largest part of the calculation.

7.5.5 Using a free electron density

By taking into account the heat capacity of the electrons, it is possible to let
PLASIMO calculate the electron temperature during the decay. In this case,
the electron temperature is not fixed at the wall (Homogeneous Neumann con-
dition. This has been done for three starting values of the electron temperature:
8000 K, 11600 K and 15000 K. The resulting electron density as a function of
time and the electron temperature as a function of time for these three settings,

7.6. VARYING THE DESIGN PARAMETERS 87

1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 1e+21

n
e
 [m

-3
]

0

100

200

300

400

500

t [
µs

]

8000 K
11600 K
15000 K
8000 K Fixed

Figure 7.4: The time needed to decay to a certain electron density, when the
electron temperature is free to change, for various values of the initial electron
temperature. For comparison, the decay when the electron temperature is fixed
at 8000 K is also given in this figure.

and a setting in which the electron temperature is fixed at 8000 K, are given in
figure 7.4 and figure 7.5, respectively.

Figure 7.4 shows that the decay speed is almost identical for 15000 K and
11600 K starting temperature. In the case the starting temperature was 15000
K, it was observed that ionization caused a very rapid decay of the electron
temperature. The minor increase in electron density is removed very fast by
diffusion. This partially compensates the higher decay speed caused by the
higher electron tempertature.

From figure 7.5, it is concluded that ionization and heat transfer rapidly let
the electron temperature drop to about 8000 K. This is therefore chosen as the
value for the fixed electron temperature. This does not mean that it is expected
that the electron temperature actually is 8000 K at the start; this will result in
a much lower average electron temperature.

The models with the free electron temperature converged poorly and slowly
compared to the models with fixed electron temperature. This, combined with
the fact that the difference appears to be marginal, is why for the rest of the
investigation the fixed-temperature model is used.

7.6 Varying the design parameters

Having developed a model for the hollow cathode discharge, it is now possible
to use this model to calculate the effect of varying several design parameters.
In this section, two parameters will be varied:

88 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 1e+21

n
e
 [m

-3
]

0

5000

10000

15000

T
e [

K
]

8000 K
10000 K
14000 K
8000 K Fixed

Figure 7.5: The electron temperature at various stages of the decay, when the
electron temperature is free to change, for various values of the initial electron
temperature. For comparison, the decay when the electron temperature is fixed
at 8000 K is also given in this figure.

- The size. The device will be scaled up and down, keeping the aspect ration
constant, in order to determine the effect of the size of the device on the
decay time. This should show the τ ∝ L2 scaling in the diffusion regime
and the τ ∝ L scaling in the Knudsen flow regime.

- The shape. The radius of the device will be varied in order to study the
effect of this on the decay time.

7.6.1 Varying the size

In order to study the effect of the hollow cathode geometry on decay time, a
series of models with various sizes has been run in PLASIMO. The decay time
is very important, as it determines for a large part the repetition rate, which in
turn is important for the power output.

The standard model of the hollow cathode has been modified by increasing
and decreasing its size. The minimum simulated size is ten times smaller than
the actual size, whereas the maximum size is ten times larger. The number of
gridpoints has not not changed. For these models, τ has been determined and
been set out in figure 7.6. This figure also shows the results of an analytical
calculation that uses Knudsen theory and an analytical calculation that uses
diffusion theory to determine τ .

The decay time closely matches the results of the analytical calculations for
larger vessels. In that case, the mean free path becomes much smaller than
the typical vessel dimensions. In that case, the influence of the walls becomes
negligible, and the problem reduces to the standard diffusion problem. The

7.6. VARYING THE DESIGN PARAMETERS 89

0.1 1 10
Scaling [-]

0.1

1

10

100

1000

10000

τ
[µ

s]

PLASIMO results
Analytical result, diffusion only
Analytical result, Knudsen flow only

Figure 7.6: The decay time τ as a function of the size of the hollow cathode
(solid line). The size is represented by a dimensionless scaling factor which is the
ratio of the size of the actual hollow cathode (16 mm height and 16 mm radius.)
and the hollow cathode that is being modelled. The dotted lines represents τ
calculated with the analytical model. The dashed line is an estimate of τ that
uses a Knudsen flow only treatment.

numerical calculation gives a diffusion speed that is slightly slower than the
speed given by the analytical calculation. This is largely caused by the boundary
condition. The scaling of τ with L2, typical for diffusion, is indeed reproduced
by PLASIMO in the regime in which diffusion is dominant.

For the smaller vessels where Knudsen flow becomes dominant, the analytical
and actual solution differ by a factor of two. As stated, the different treatment of
the boundary condition causes this difference. While the quantitative value may
not be accurate, it is still much better than the value offered by the exclusive
use of diffusion theory.

7.6.2 Varying the radius

Having investigated the effect of a general enlarging or reduction of the size of
the hollow cathode, the effect of changing only the radius of the hollow cathode
will be investigated. The height of the device is fixed at 16 mm, while models are
made for various radii : 5.67 mm, 8 mm , 16 mm, 24 mm ,32 mm and 48 mm.
The decay times produced are shown in figure 7.7.

Figure 7.7 shows that indeed the smallest dimension largely determines the
diffusion speed: increasing the diameter of the device from 10 to 20 mm hardly

90 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

10 100
Radius [mm]

10

τ
[µ

s]
PLASIMO results
Analytical result

Figure 7.7: The decay time τ as a function of the radius of the hollow cath-
ode(solid line). The height of the device is kept constant at 8 mm. The dashed
line is the analytical answer.

influences the diffusion at all. The trend of the analytical result is followed well,
but there is a deviation of about 30%. This deviation is caused by the different
boundary conditions used for the analytical and numerical model. A reduction
of r would result in a reduction of τ , but in order to gain a significant reduction,
a fairly large decrease of r is needed. This introduces a variety of undesired
effects. For instance, the volume would decrease significantly, causing a much
greater heat load on the walls. Also, the pendulum effect, on which the working
of the hollow cathode is based, may become less efficient.

7.7 Conclusions

The PLASIMO code has been extended to incorporate an approach to dif-
fusion that combines classic diffusion and Knudsen flow in order to deal with
plasmas that have a mean free path which is not much smaller than the ves-
sel dimensions. A validation of the code against a simplified analytical model
indicates that the code is indeed implemented correctly.

PLASIMO, with the new approach to diffusion, has been used to create a
model that simulates the decay of the plasma in the cathode of a hollow cathode
discharge. For the standard geometry, a decay time of 24.5 µs has been found.

An investigation has been conducted on the effect of the size of the hollow
cathode on the decay time. A model with a variety of settings has been created

7.7. CONCLUSIONS 91

in which the size of the hollow cathode was varied between one tenth of the
actual size and ten times the actual size. For the larger hollow cathodes, the
decay time scales with L2, where L is a typical length scale. This behavior
of τ indicates that diffusion is the dominant process in this case, because this
process also scales with L2, rather than Knudsen flow which scales with L. This
is consistent with the fact that the mean free path in this case is considerably
smaller than the vessel length. For the smaller hollow cathodes, τ scales with L.
This behavior of τ indicates that Knudsen flow is dominant, because Knudsen
flow scales with L, while diffusion does not. This behavior is consistent with the
fact that Knudsen flow becomes dominant when the mean free path becomes
much larger than the vessel dimensions. The normal hollow cathode appears to
be between the two regimes. This justifies the use of the hybrid approach. In
practice, the scaling of τ with L rather than L2 means that it becomes more
difficult to further reduce τ by reducing the dimensions of the hollow cathode.

Furthermore, the radius r is varied while keeping the height of the device
constant. This indicated that the radius of the current device can be increased
without seriously affecting the decay time.

92 CHAPTER 7. SIMULATING PLASMA DECAY IN AN HCD

Chapter 8

Conclusions

8.1 Conclusions of chapter 3

In this chapter, PLASIMO was tested by running various simple problems, for
which an analytical solution exists. Comparison between the results generated
with PLASIMO and the analytical solution showed no significant discrepancies.

It was also investigated whether it was possible to approach a plasma that is
in LTE by using a series of NLTE models that get ever closer to LTE. While
possible, it was found that the slow convergence made it difficult to use the
NLTE approach when the plasma is near LTE.

8.2 Conclusions of chapter 4

In this chapter, Disturbed Bilateral Relations have been used to create a
simple 0-D model that can provide estimates of various plasma parameters. The
results of this model have been compared to the results of PLASIMO simulations
for various parameters. For the range of parameters where the DBR model is
valid, the DBR approximates the PLASIMO results well. This means, that
these results can be used as starting values for a PLASIMO calculation.

8.3 Conclusions of chapter 5

Comparing the results between the NLTE calculation and the LTE calculation
showed significant differences between the results of those approaches for iden-
tical situations. These can partially be explained by the difference in electron
density at the wall between the LTE calculation and the NLTE calculation.

8.4 Conclusions of chapter 6

Here, a plug-in that implements the Lorentz force is described. This is a key
part in the effort to model pinch plasmas. Tests revealed that while the results
produced by the plug-in are accurate, the current implementation gets unstable
if the pinching force becomes dominating, as it is in a real pinch plasma. It is

93

94 CHAPTER 8. CONCLUSIONS

believed that better flow solvers and a stronger coupling of the equations will
alleviate this problem.

8.5 Conclusions of chapter 7

This chapter deals with the implementation of a new way of calculating the
diffusion coefficient. By taking into account both normal diffusion and Knudsen
flow, the diffusion coefficient can be calculated for much lower pressures than if
one would use only normal diffusion. This calculator has been validated, and
produced the correct results.

A model of the decay in a hollow cathode discharge has been created using
the new diffusion calculator. Using this model, it was determined that the 1

e
time τ is equal to 24.7 µs.

It was also investigated what the effects of reshaping the hollow cathode is.
It was found that a reduction of the hollow cathode size has relatively less effect
on the decay times than an increase of the hollow cathode size has. This means,
that a further decrease of the size of the hollow cathode will not have as much
effect as the previous reductions had.

8.6 General conclusions and recommendations

This work can be used as a basis for further study of the hollow cathode.
Some aspects, such as the decay, have been studied fairly detailed, while other
aspects, such as the ignition, have not been touched at all. Much of this is
caused by the fact that during the work on this project, a Monte Carlo code,
essential for the accurate simulation of the ignition, was not ready yet.

The obvious next step would be to use a Monte Carlo code and use it to
calculate the ignition phase. Also, a comparing the results of the study on the
decay with the fluid code with results obtained by using a Monte Carlo approach
could be highly insightful.

In order to study the pinch phase, it is probably necessary to use a different
approach, in which the equations are more strongly coupled, to obtain conver-
gence. This is the next step in describing the pinch phase.

Appendix A

Technology assessment

Computers using silicon-based logic have been on the rise since their invention.
While at first, the machines were large, cumbersome, difficult to operate, and
expensive, the continuous innovations made computers more powerful, smaller,
and cheaper. The impact that the ever faster computers have had on the world
is difficult to overestimate.

In 1965(!), Gordon Moore predicted an exponential growth of the amount
of transistors on a computer processor. [18] This exponential growth resulted
initially in a doubling of the amount of transistors every year. Since the 1970,
this rate has dropped to a doubling every 18 months. In order to keep the
processor die (the piece of sillicon in the chip) sizes small, while increasing the
amount of transistors, more transistors have to be put on a smaller area1. This
requires ever more advanced lithographic manufacturing techniques, in order to
produce smaller structures2.

In the near future, the further miniaturization of the structures will make it
impossible to use the current UV imaging techniques, as explained in chapter
2. An alternative is EUV techniques. For this, a suitable source of EUV is
needed. The hollow cathode discharge is a candidate for this. Gaining a better
understanding of the way this device works should make optimizing the design
easier.

The speed with which the plasma in the hollow cathode decays is important
for practical applications. The repetition rate of the hollow cathode is largely
determined by the decay time of the plasma in the hollow cathode. By modeling
this decay, it should be possible to optimize the hollow cathode with respect to
the decay rate and the other design parameters.

1As an example, at the time of writing this (August 2002), a typical PC processor such as
the AMD ”Thoroughbred” uses 54 million transistors that are put on a 88 mm2 processor die.

2Smaller structures not only allow for a more complex processor design (more, or more
complex, operations per clock cycle), but also for higher clock speeds and lower power dissi-
pation.

95

96 APPENDIX A. TECHNOLOGY ASSESSMENT

Appendix B

The code of the DBR
program

B.1 Header file

#include < i o s t ream . h>
#include < i o s t ream>
#include < f s t ream>
#include < s t r i n g>
#include <math . h>
#include < s t d l i b . h>

using std : : s t r i n g ;
using std : : i f s t r e a m ; // Thank You Bart H .

class DBR
{ private :

double eaLUT [1 0 0] [2] , iaLUT [1 0 0] [2] , aaLUT [1 0 0] [2] ;
char f i l ename [2 5 2] ;
int s i z e IA , sizeEA , sizeAA ; // t h e s e a r e t he s i z e s o f th e LUTs .

double necente r , Te ,Th , guessTe , guessTh , Twall , power , p r e s su r e ;
double ionEnergy , kB , na , r , l , eps , p i , eVtoK , kion ,D, mass ,mp;
double conduct ion , chemica l ,me , kheat , HPcond , lambda , degrat ,
double np , Planck , ArrheniusPower , r e c r a t e ;
bool nameloaded ;
// c a l c u l a t e s the d i f f u s i o n c o e f f i c i e n t D

void ca l cu la teD (const double Te in i , const double T i i n i) ;
// c a l c u l a t e s Te from the mass b a l a n c e .

void ca l cu la t eTe (double Te in i) ;
// c a l c u l a t e s ne from the e power b a l a n c e

void c a l c u l a t e n e () ;
// c a l c u l a t e Th from HP power b a l a n c e

void calculateThHP () ;
// khea t

void c a l c u l a t e k h e a t () ;
// p r e s s u r e

97

98 APPENDIX B. THE CODE OF THE DBR PROGRAM

void ca l cu l a t eP () ;
// h e a t c o n d u c t i o n

void calculateHPcond (double Theavy) ;
// power d i s t r i b u t i o n i n e b a l a n c e . P r e t t y i m p o r t a n t ! !

void ca l cu l a t ePowerD i s t r i bu t i on () ;
// C a l c u l a t e s Th from the h power b a l a n c e w i th

// ep s ∗ c o n d u c t i o n s u b s i t i t u t e d .

// c o n d u c t i o n i s a l s o c h e c k e d to a v o i d l o s i n g more h e a t

// by c o n d u c t i o n than i s p h y s i c a l l y p o s s i b l e .

// t h i s i s t u r n e d o f f i n mode 0 .

void calculateThfromPower (int mode=1);
int calculateLTEne () ;
// o b v i o u s l y , t h i s seems t r i v i a l . The t r i c k y p a r t i s d o i n g i t n i c e l y . . .

void c a l c u l a t e n a () ;
// c a l c u l a t e s the c r o s s e c t i o n from the i a LUT

double g e t c r o s s s e c t i a (double T) ;
// c a l c u l a t e s the c r o s s e c t i o n from th e ea LUT

double g e t c r o s s s e c t e a (double T) ;
// c a l c u l a t e s the c r o s s e c t i o n from th e aa LUT

double g e t c r o s s s e c t a a (double T) ;
int r eadSpec i e s () ; // r e a d s th e main s p e c i e s f i l e .

int readeaLUT () ; // r e a d s the ea LUT . F un c t i o n r e t u r n s e r r o r v a l u e .

int readiaLUT () ; // r e a d s the i e LUT . F un c t i o n r e t u r n s e r r o r v a l u e .

int readaaLUT () ; // r e a d s the i a LUT . F un c t i o n r e t u r n s e r r o r v a l u e .

int l o ade r () ; // l o a d s the s p e c i e s i n f o

// c a l c u l a t e s the T h r e e P a r t i c l e R a t e u s i n g Saha .

void ca l cu l a t eThre ePa r t i c l eRat e (double Tel) ;
public :
DBR(const double Boltzmann =1.38065 e−23,

const double p i i =3.1415,
const double BoltzmannA =11604.0,
const double mproton =1.672621 e−27,
const double melectron =9.109 e−31,
const double h=6.602 e−34);

// g e t s w a l l t e m p e r a t u r e

void getTwal l (double Tw=300.00){Twall=Tw;}
void getNp (double n i n i){np=n i n i ; na=n i n i ; } // g e t s a v e r a g e Na

// g e t s power , l e n g h t , r a d i u s , and c a l c u l a t e s power d e n s i t y

void getPowerDensity (const double Pow,
const double rad iu s ,
const double l enght) ;

void getguessTe (double guess =10000.0){ guessTe=guess ;}
void getguessTh (double guess =1000.0){ guessTh=guess ;}
void getSmal lestDimens ion (double l){ lambda=l ;}
int getFileName (const char ∗name) ; // r e a d s the f i l e n a m e .

// r e a d s the aa LUT . F un c t i o n r e t u r n s e r r o r v a l u e .

int c a l c u l a t e () ; // d oe s the c a l c u l a t i o n . May r e t u r n an e r r o r .

// A l l ows the e x t r a c t i o n o f th e c a l c u l a t e d ne a t the c e n t e r

double putnecenter (){ return necente r ;}
double putnacenter (){ return na ; } // Same f o r na

B.2. BODY FILE 99

double putTecenter (){ return Te ; } //And Te

double putThcenter (){ return Th ; } //And Th

double putPressure (){ return pre s su r e ; } //And P

//100% o f the u s e r s r e q u e s t e d t h i s f e a t u r e : O

double putChemical (){ return chemica l ;}
double putConduction (){ return conduct ion ;}

} ;

B.2 Body file

#include ”dbr . h”

int DBR: : l oade r () // t h i s l o a d s a l l LUTs+ f i l e data .

// I t d oe s so by c a l l i n g the l o a d e r s f o r th e main f i l e

// f o o and the LUTs f o o e a , f o o i a , f o o a a , and c h e c k s

// whethe r the l o a d i n g g o e s OK . The e r r o r che ck i s made

// a l m o s t r edundant by the ge tF i l eName member .

{ int e r r o r , e ;
e r r o r =0;
e=readSpec i e s () ;
e r r o r=+e ;
e=readeaLUT () ;
e r r o r=+e ;
e=readiaLUT () ;
e r r o r=+e ;
e=readaaLUT () ;
e r r o r=+e ;
i f (e r r o r>1) e r r o r =1;
return e r r o r ;

}

double DBR: : g e t c r o s s s e c t a a (double T)
// Thi s f u n c t i o n g e t s th e v a l u e o f th e c r o s s s e c t i o n f o r a

// c e r t a i n e n e r g y Thi s e n e r g y c o r r e s p o n d s to a t e m p e r a t u r e ,

// which i s used i n the LUT and i n th e f u n c t i o n s t h a t c a l l

// t h i s f u n c t i o n . I f t h e t e m p e r a t u r e i s l o w e r than the l o w e s t

// t e m p e r a t u r e v a l u e i n the LUT , i t r e t u r n s the c r o s s s e c t i o n

// o f t h i s t e m p e r a t u r e . I f i t i s h i g h e r than the h i g h e s t

// t e m p e r a t u r e i n the LUT , i t r e t u r n s the c r o s s s e c t i o n a t the

// h i g h e s t t e m p e r a t u r e i n the LUT I f i t f a l l s between two

// t e m p e r a t u r e v a l u e s i n the LUT , i t makes a l i n e a r i n t e r p o l a t i o n .

{ double c r s ;
int i , n ;
n=0;
i =1;
i f (T<=aaLUT [0] [0])

c r s=aaLUT [0] [1] ;
// l o w e r than the l o w e s t v a l u e i n the LUT

100 APPENDIX B. THE CODE OF THE DBR PROGRAM

else
{ i f (T>=aaLUT [sizeAA − 1] [0]) c r s=aaLUT [sizeAA − 1] [1] ;

// h i g h e r than th e h i g a r t i c l e h e s t v a l u e

e l s e a r t i c l e
{ for (i =1; i<(sizeAA−1); i++)// f e n c e p o s t a l e r t ! !

{ i f (T>=aaLUT [i] [0]) n++;
// n i s th e v a l u e o f t h e t e m p e r a t u r e i n the LUT

// j u s t be low T , n+1 l i e s j u s t above .

}
c r s =(aaLUT [n] [1]−aaLUT [n + 1] [1]) /
(aaLUT [n] [0]−aaLUT [n + 1] [0]) ∗ (T−aaLUT [n] [0]) +
aaLUT [n] [1] ;
// d e l t a s igma / d e l t a T ∗T + o f f s e t

}

}
return c r s ;

}

double DBR: : g e t c r o s s s e c t i a (double T)
// s i m i l i a r t o the f u n c t i o n above

{ double c r s ;
int i , n ;
n=0;
i =1;
i f (T<=iaLUT [0] [0]) c r s=iaLUT [0] [1] ;
// l o w e r than the l o w e s t v a l u e i n the LUT

else
{ i f (T>=iaLUT [s i z e IA − 1] [0]) c r s=iaLUT [s i z e IA − 1] [1] ;

// h i g h e r than th e h i g h e s t v a l u e

else
{ for (i =1; i<(s i z e IA−1); i++)

{ i f (T>=iaLUT [i] [0]) n++;
// n i s th e v a l u e o f t h e t e m p e r a t u r e i n the LUT

// j u s t be low T , n+1 l i e s j u s t above .

}
c r s =(iaLUT [n] [1]− iaLUT [n + 1] [1]) /
(iaLUT [n] [0]− iaLUT [n + 1] [0]) ∗ (T−iaLUT [n] [0]) +
iaLUT [n] [1] ; // i n t e r p o l a t i o n .

}

}
return c r s ;

}

double DBR: : g e t c r o s s s e c t e a (double T)
// s i m i l i a r t o the f u n c t i o n above

{ double c r s ;
int i , n ;
n=0;

B.2. BODY FILE 101

i =1;
i f (T<=eaLUT [0] [0]) c r s=eaLUT [0] [1] ;
// l o w e r than the l o w e s t v a l u e i n the LUT

else
{ i f (T>=eaLUT [sizeEA − 1] [0]) c r s=eaLUT [sizeEA − 1] [1] ;

// h i g h e r than the h i g h e s t v a l u e

else
{ for (i =1; i<(sizeEA−1); i++)

{ i f (T>=eaLUT [i] [0]) n++;
// n i s th e v a l u e o f th e t e m p e r a t u r e i n the LUT

// j u s t be low T , n+1 l i e s j u s t above .

}
c r s =(eaLUT [n] [1]− eaLUT [n + 1] [1]) /
(eaLUT [n] [0]− eaLUT [n + 1] [0]) ∗ (T−eaLUT [n] [0]) +
eaLUT [n] [1] ; // i n t e r p o l a t i o n .

}

}
return c r s ;

}

int DBR: : getFileName (const char ∗name)
// Thi s f u n c t i o n c h e c k s the e x i s t a n c e o f th e f i l e s ∗ name , ∗ nameaa ,

//∗ nameea and ∗ nameia . I t a l s o pu t s t he c o n t e n t s o f ∗ name i n the

// f i l e n a m e v a r i a b l e o f th e DBR c l a s s . Th i s f u n c i o n i s ma in ly

// a b i g e r r o r c h e c k .

{ int e r r o r ;
char otherName [2 5 4] ;
e r r o r =0;
//We s t a r t w i t h o u t e r r o r s . Let ’ s hope i t s t a y s t h a t way . . .

s t r cpy (f i l ename , name) ;
// now , the f i l e n a m e i s l o a d e d i n t o the c l a s s .

i f s t r e a m f (f i l ename , i o s : : nocreate) ;
e r r o r +=(! f) ;
s t r cpy (otherName , f i l ename) ;
s t r c a t (otherName , ”ea ”) ;
i f s t r e a m e a l (otherName , i o s : : nocreate) ;
e r r o r +=(! e a l) ;
s t r cpy (otherName , f i l ename) ;
s t r c a t (otherName , ”aa ”) ;
i f s t r e a m aa l (otherName , i o s : : nocreate) ;
e r r o r +=(! aa l) ;
s t r cpy (otherName , f i l ename) ;
s t r c a t (otherName , ” i a ”) ;
i f s t r e a m i a l (otherName , i o s : : nocreate) ;
e r r o r +=(! i a l) ;
return (e r r o r) ;

}

int DBR: : r eadSpec i e s ()

102 APPENDIX B. THE CODE OF THE DBR PROGRAM

// Thi s f u n c t i o n r e a d s the main s p e c i e s data f i l e . Th i s f i l e s h o u l d

// c o n t a i n the f o l l o w i n g :

// The mass o f th e p a r t i c l e i n a . u .

// The i o n i z a t i o n r e a c t i o n r a t e c o n s t a n t

// The power i n which the t e m p e r a t u r e o c c u r s i n the r e a c t i o n r a t e

// The e n e r g y l e v e l o f th e i o n g r o u n d s t a t e

// The r a t i o o f th e d e g e n e r a c y o f th e i o n g r o u n d s t a t e and the

// g r o u n d s t a t e

{ int e r r o r =0;
i f s t r e a m m a i n f i l e (f i l ename , i o s : : nocreate) ;
i f (! m a i n f i l e) e r r o r ++; // f i l e not found e r r o r .

else // we r e a d the f i l e .

{ s t r i n g b u f f e r ;
m a i n f i l e >> b u f f e r ;
mass = (a t o f (b u f f e r . c s t r ())) ∗mp;
m a i n f i l e >> b u f f e r ;
k ion = a t o f (b u f f e r . c s t r ()) ;
m a i n f i l e >> b u f f e r ;
ArrheniusPower = a t o f (b u f f e r . c s t r ()) ;
m a i n f i l e >> b u f f e r ;
ionEnergy = a t o f (b u f f e r . c s t r ()) ;
m a i n f i l e >> b u f f e r ;
degrat = a t o f (b u f f e r . c s t r ()) ;

}
return e r r o r ;

}

int DBR: : readeaLUT ()
// Format : The f i r s t l i n e i s th e number o f c r o s s s e c t i o n s .

// Then , i t i s a t a b l e , w i th l e f t th e t e m p e r a t u r e and r i g h t

// the c r o s s s e c t i o n .

{ int e r r o r =0;
int i , max ;
char d [2 5 4] ;
s t r cpy (d , f i l ename) ;
s t r c a t (d , ”ea ”) ;
i f s t r e a m e a l (d , i o s : : nocreate) ;
i f (! d) e r r o r ++; // f i l e not found .

else
{ s t r i n g b u f f e r ;

e a l >> b u f f e r ;
max = a t o i (b u f f e r . c s t r ()) ;
// I t i s hoped the c o r r e c t i n f o r m a t i o n i s s p e c i f i e d

// h e r e . An e r r o r c h e c k w i l l be d i f f i c u l t t o implement .

sizeEA=max ; // s e t s th e s i z e o f th e l o o k−up t a b l e .

// Each t a b l e has i t s s i z e .

for (i =0; i<max ; i++)// r e a d i n g the f i l e

{ e a l >> b u f f e r ;
eaLUT [i] [0] = a t o f (b u f f e r . c s t r ()) ;
e a l >> b u f f e r ;

B.2. BODY FILE 103

eaLUT [i] [1] = a t o f (b u f f e r . c s t r ()) ;
}

}
return e r r o r ;

}

int DBR: : readaaLUT ()
// f o rmat : The f i r s t l i n e i s th e number o f c r o s s s e c t i o n s .

// Then , i t i s a t a b l e . I t i s s i m i l i a r t o the f u n c t i o n above .

{ int e r r o r =0;
int i , max ;
char d [2 5 4] ;
s t r cpy (d , f i l ename) ;
s t r c a t (d , ”aa ”) ;
i f s t r e a m aa l (d , i o s : : nocreate) ;
i f (! d) e r r o r ++; // f i l e not found .

else
{ s t r i n g b u f f e r ;

aa l >> b u f f e r ;
max = a t o i (b u f f e r . c s t r ()) ;
// i t i s hoped the c o r r e c t i n f o r m a t i o n i s s p e c i f i e d

// h e r e . an e r r o r c h e c k w i l l be d i f f i c u l t t o implement .

sizeAA=max ; // s e t s the s i z e o f th e l o o k−up t a b l e .

// Each t a b l e has i t s s i z e

for (i =0; i<max ; i++)
{ aa l >> b u f f e r ;

aaLUT [i] [0] = a t o f (b u f f e r . c s t r ()) ;
aa l >> b u f f e r ;
aaLUT [i] [1] = a t o f (b u f f e r . c s t r ()) ;

}
}
return e r r o r ;

}

int DBR: : readiaLUT ()
// f o rmat : The f i r s t l i n e i s th e number o f c r o s s s e c t i o n s .

// Then , i t i s a t a b l e . I t i s s i m i l i a r t o the f u n c t i o n above .

{ int e r r o r =0;
int i , max ;
char d [2 5 4] ;
s t r cpy (d , f i l ename) ;
s t r c a t (d , ” i a ”) ;
i f s t r e a m i a l (d , i o s : : nocreate) ;
i f (! d) e r r o r ++; // f i l e not found .

else
{ s t r i n g b u f f e r ;

i a l >> b u f f e r ;
max = a t o i (b u f f e r . c s t r ()) ;
// i t i s hoped the c o r r e c t i n f o r m a t i o n i s s p e c i f i e d

// h e r e . an e r r o r c h e c k w i l l be d i f f i c u l t t o implement .

104 APPENDIX B. THE CODE OF THE DBR PROGRAM

s i z e IA=max ; // s e t s th e s i z e o f th e l o o k−up t a b l e .

// Each t a b l e has i t s s i z e

for (i =0; i<max ; i++)
{ i a l >> b u f f e r ;

iaLUT [i] [0] = a t o f (b u f f e r . c s t r ()) ;
i a l >> b u f f e r ;
iaLUT [i] [1] = a t o f (b u f f e r . c s t r ()) ;

}
}
return e r r o r ;

}

void DBR: : ca l cu la teD (const double Te in i , const double T i i n i)
// Thi s member c a l c u l a t e s th e r e d u c e d a m b i p o l a r d i f f u s i o n c o e f f i c i e n t .

{ double tau , Di , c r s ;
c r s=g e t c r o s s s e c t i a (T i i n i) ;
tau =1.0/ c r s / s q r t (8 . 0∗kB∗T i i n i / p i /mass) ; // tau =1/ s igma /V

Di=tau ∗ kB ∗ T i i n i / mass ; // tau=s igma ∗V
D=Di ∗(1.0+(Te in i / T i i n i)) ;
// v e r i f i e d . Seems to work j u s t f i n e

}

void DBR: : c a l cu l a t eThre ePa r t i c l eRa t e (double Tel)
// Thi s c a l c u l a t e s th e t h r e e−p a r t i c l e r e c o m b i n a t i o n r a t e .

{ double z , zz ,K;
z=(Planck/ s q r t (2∗ pi ∗me∗kB∗Tel)) ;
zz=pow(z , 3) ;
K=kion ∗pow(Tel , ArrheniusPower) ;
r e c r a t e=K∗ zz / degrat /2 ;

}

void DBR: : ca l cu l a t eTe (double Te in i)
// c a l c u l a t e s Te from th e p a r t i c l e b a l a n c e . Th i s i s r a t h e r

// s t r a i g h t f o r w a r d and i s l i k e l y to g i v e r a t h e r good r e s u l t s .

// In f a c t , p r a c t i c a l t e s t i n g has i n d i c a t e d t h a t the p r e d i c t i o n

// o f Te i s more a c c u r a t e than the p r e d i c t i o n o f ne and Th .

// the a r r h e n i u s r e a c t i o n r a t e i s h a r d w i r e d i n t o t h i s member .

{ double K, BoltzE ;
K=D/np/na/lambda/lambda+r e c r a t e ∗ necente r ∗ necente r /np ;
BoltzE=K/ kion /pow(Te in i , ArrheniusPower) ;
Te=−ionEnergy∗eVtoK/ log (BoltzE) ;

}

void DBR: : c a l c u l a t e n e () // Thi s c a l c u l a t e s ne from the e n e r g y

// b a l a n c e . Both p r o c e s s e s a r e l i n e a r i n ne

// so t h i s i s not t oo hard , f o r t u n a t e l y .

{ double K;
K=exp(− ionEnergy∗eVtoK/Te) ;
necente r=eps /(D/lambda/lambda∗ ionEnergy /
np∗kB∗eVtoK+kheat ∗(Te−Th)∗np) ;

B.2. BODY FILE 105

// t h i s works i f t h e r e i s r e c o m b i n a t i o n .

// I t i s i n c o r r e c t t o u s e

}
// wi th a good way o f d e s c r i b i n g ne and Te , we a t l e a s t

// have a chance o f g e t t i n g a good d e s c r i p t i o n o f Th .

void DBR: : c a l c u l a t e k h e a t ()
// The amount o f e n e r g y l o s t by t h e s e p r o c e s s e s i s g i v e n by

// t he amount o f h e a t l o s t i n one p r o c e s s t ime the c o l l i s i o n

// f r e q u e n c y . The amount o f h e a t l o s t i n one c o l l i s i o n i s g i v e n

// by 2 me/mh∗3/2∗KB(Te−Th) . (Te−Th) g e t s s e p a r a t e d . The c o l l i s i o n

// t ime i s tau=C/Te ∗ (ne ∗na) Again , th e l a s t p a r t g e t s s e p e r a t e d

{ double K, tau , c r s ;
c r s=g e t c r o s s s e c t e a (Te) ;
K=me/mass ∗3 .0∗kB ;
tau =1.0/ c r s / sq r t (8 . 0∗kB∗Te/ pi /me) ;
kheat=K/tau ;

}

void DBR: : ca l cu l a t eP ()
{ pre s su r e=np∗kB∗Th+necente r ∗kB∗Te ;
}
// can ’ t do much wrong wi th t h a t , a l t o u g h t h i n g s might g e t

// i n t e r e s t i n g i f we t r y to u s e p r o f i l e s . Note the t e m p e r a t u r e

// p r o f i l e . Not implemented y e t though . You have to make an

// e d u c a t e d g u e s s y o u r s e l f : (. I m p l e m e n t a t i o n w i l l be v e r y d i f f i c u l t ,

// b e c a u s e we would have to know the p r o f i l e . Th i s i s somewhat

// a n t i t h e t i c a l t o the 1− c o n t r o l volume approach to say the l e a s t .

DBR: :DBR(const double Boltzmann , const double p i i ,
const double BoltzmannA , const double mproton ,
const double melectron , const double h)

{ kB=Boltzmann ;
p i=p i i ;
eVtoK=BoltzmannA ;
mp=mproton ;
me=melectron ;
Planck=h ;
// Thi s imp l ement s th e f undamenta l c o n s t a n t s o f n a t u r e .

// Th i s way , we may o v e r l o a d them with our own v a l u e s .

// Th i s has no p r a c t i c a l u s e w h a t s o e v e r

conduct ion =0.00000005;
chemica l =0.99999995;
nameloaded=fa l se ;
// an i n i t i a l g u e s s . Too much c o n d u c t i o n has a t e n d e n c y o f

// s c r e w i n g the c a l c u l a t i o n , s o we s t a r t a t the s a f e s i d e .

}
void DBR: : getPowerDensity (const double Pow, const double rad iu s ,

const double l enght)

106 APPENDIX B. THE CODE OF THE DBR PROGRAM

{ int e r r o r =0;
power=Pow;
r=rad iu s ;
l=lenght ;
double vo l=pi ∗ r ∗ r ∗ l ;
i f (vo l >0 .0000001) eps=power/ vo l ;
else
{ eps =1;

e r r o r++;
}
// The who le programs u s e s power d e n s i t i e s r a t h e r than powers .

}

void DBR: : calculateHPcond (double Theavy)
{ double c r s , l s , vtherm ;

c r s=g e t c r o s s s e c t a a (Theavy) ;
vtherm=s qr t (8 . 0∗kB∗Theavy/ p i /mass) ;
l s =0.70716/(np∗ c r s) ;
HPcond=(15 .0/8 .0)∗kB∗np∗ l s ∗vtherm ;

}
// Thi s r e p r e s e n t s th e h e a t c o n d u c t i o n o f a ga s . Of c o u r s e , we may

// need to u s e e l e c t r o n s t oo . Th i s w i l l be v e r y i n a c c u r a t e , d i f f i c u l t

// and e m p i r i c a l . I ’ d r a t h e r s t a y c l e a r o f i t .

void DBR: : calculateThHP ()
{ double ca , cb ;

ca=necente r ∗np∗kheat ;
cb=HPcond/lambda/lambda ;
Th=(ca∗Te+cb∗Twall)/ (ca+cb) ;

}
//Th c a l c u l a t e d from the heavy p a r t i c l e b a l a n c e , which seems l i k e

// a s e n s i b l e p l a c e to g e t i t f rom . The s i z e o f both p a r t s o f th e

// e q u a t i o n i s g i v e n by t he e l e c t r o n power d i s t r i b u t i o n

void DBR: : calculateThfromPower (int mode) // mode ; 1 = e r r o r c h e c k , 0 no check .

{ int i ;
i =0;
Th=Twall+lambda∗ lambda∗ eps ∗ conduct ion /HPcond ;
while (mode &&(Th>Te)&&(i <100000)) // o b v i o u s l y , we have

// c h a n n e l e d too much e n e r g y i n c o n d u c t i o n . . .

{ conduct ion=conduct ion ∗0 . 9 9 9 ;
chemica l=1−conduct ion ;
Th=Twall+lambda∗ lambda∗ eps ∗ conduct ion /HPcond ;
i ++;

}
}

void DBR: : c a l cu l a t ePowerD i s t r i bu t i on ()
// c a l c u l a t e s the d i s t r i b u t i o n o f th e imput power o v e r d i f f u s i o n l o s s e s

// and c o n s u c t i o n l o s s e s

B.2. BODY FILE 107

{ double K;
K=exp(− ionEnergy∗eVtoK/Te) ;
chemica l=necente r /np∗D/lambda/lambda/ eps ∗ ionEnergy∗kB∗eVtoK ;
conduct ion=1−chemica l ;

}

void DBR: : c a l c u l a t e n a () // Thi s i s g o i n g to be hard , u n l e s s . . .

// In a NLTE plasma , i o n i z a t i o n i s not l i k e l y to r i s e above 9 9 . 9 % , r i g h t ?

// So l e t ’ s put a c e i l i n g t h e r e .

{ const double max=0.0001;
na=np−necente r ;
i f ((na/np)<max)
{ na=np∗max ;

necente r=np−na ;
}

}

int DBR: : c a l c u l a t e ()
{ const int imax=100;

const int imin =1;
int i , e , e r r o r ;
//0= Normal nLTE c a l c u l a t i o n

//1= e r r o r

double c ;
necente r=s q r t (np) ;
i f (necente r>np) necente r=np / 1 . 1 ; // e r r o r c h e c k .

e r r o r=loade r () ; // check f o r e r r o r s i n the l o a d e r . The f i l e n a m e

// check s h o u l d c a t c h most u n l e s s a LUT i s m i s s i n g .

i f (e r r o r) return (1) ; // i f we have an e r r o r , we q u i t .

else
{ na=np ;

ca l cu la teD (guessTe , guessTh) ;
c a l cu l a t eThre ePa r t i c l e Rat e (guessTe) ;
ca l cu l a t eTe (guessTe) ;
for (i=imin ; i<imax ; i++)
{ ca l cu la teD (Te , guessTh) ;

c a l cu l a t eThre ePa r t i c l e Rat e (Te) ;
ca l cu l a t eTe (Te) ;

} // i t e r a t i v e l y d e t e r m i n i n g Te

c a l c u l a t e k h e a t () ;
calculateHPcond (guessTh) ;
calculateThfromPower (1) ;
c a l c u l a t e n e () ; // At t h i s p o i n t , we know a l o t .

// good g u e s s f o r a s e c o n d p a s s !

c a l c u l a t e n a () ;
for (i=imin ; i<imax ; i++)
{ c a l c u l a t e n e () ;

ca l cu l a t eTe (Te) ;
calculateThfromPower (1) ;

108 APPENDIX B. THE CODE OF THE DBR PROGRAM

// a c t u a l l y , t h i s i s used to d e t e r m i n e whether

// the amount o f c o n d u c t i o n makes any s e n s e .

calculateThHP () ;
c a l cu l a t ePowerD i s t r i bu t i on () ;
calculateHPcond (Th) ;
ca l cu la teD (Te ,Th) ;
c a l c u l a t e k h e a t () ;
c a l c u l a t e n a () ;
c a l cu l a t eThre e Pa r t i c l eR at e (Te) ;

}
ca l cu l a t eP () ;

}
return e r r o r ; // e i t h e r 0 o r 1 , d e pe nd ing on no e r r o r / e r r o r

}

double getdouble () / / a r o b u s t way o f r e a d i n g a c h a r a c t e r .

{ char input [1 0 0 0] ;
double r e s u l t ;
int e r r o r ;
char ∗ e r r p o i n t e r ;
e r r o r =1;
while (e r r o r)
{ c in>>input ;

r e s u l t=s t r t o d (input ,& e r r p o i n t e r) ;
i f (∗ e r r p o i n t e r ==’\0’) e r r o r =0; // Thank you Bart H .

else cout<<”Error in input s t r i n g ”<<endl ;
}
return r e s u l t ;

}

int main ()
{ DBR b ;

double x , xx , xxx ;
int a ;
char f i l ename [2 5 4] ;
a=1;
while (a)
{ cout<< ”What p a r t i c l e are we us ing ?”<<endl ;

// g e t s th e f i l e n a m e .

c in >> f i l ename ;
a=b . getFileName (f i l ename) ;
i f (a) cout<<”F i l e not found ”<<endl ;

}
a=1;
while (a)
{ cout << ”Enter the wa l l temperature in K”<<endl ;

x=getdouble () ;
i f (x>0)
{ b . getTwal l (x) ;

a=0;

B.2. BODY FILE 109

}
else cout<<”Temperatures tend to be p o s i t i v e ”<<endl ;

}
a=1;
while (a)
{ cout << ”Enter the average heavy p a r t i c l e dens i ty in mˆ−3” <<endl ;

x=getdouble () ;
i f (x>0)
{ b . getNp (x) ;

a=0;
}
else cout<<” P a r t i c l e d e n s i t i e s tend to be p o s i t i v e ”<<endl ;

}
a=1;
while (a)
{ cout <<”Enter the t o t a l power in W” <<endl ;

x=getdouble () ;
i f (x>0) a=0;
else cout<<”We need a p o s i t i v e amount o f power ”<<endl ;

}
a=1;
while (a)
{ cout <<”Enter the rad iu s in m”<<endl ;

xx=getdouble () ;
i f (xx>0) a=0;
else cout<<”We need a p o s i t i v e rad iu s ”<<endl ;

}
a=1;
while (a)
{ cout <<”Enter the l enght in m”<<endl ;

xxx=getdouble () ;
i f (xxx>0) a=0;
else cout<<”We need a p o s i t i v e l enght ”<<endl ;

}
a=1;
b . getPowerDensity (x , xx , xxx) ;
while (a)
{ cout <<”Enter the d i f f u s i o n l enght in m”<<endl ;

x=getdouble () ;
i f (x>0)
{ a=0;

b . getSmal lestDimens ion (x) ;
}
else cout<<”We need a p o s i t i v e d i f f u s i o n l enght ”<<endl ;

}
x=10000;
b . getguessTe (x) ;
x=1000;
b . getguessTh (x) ;
// I have y e t to a n c o u n t e r a c a s e i n which t h e s e g u e s s e s do not work .

110 APPENDIX B. THE CODE OF THE DBR PROGRAM

a=b . c a l c u l a t e () ;
i f (a) cout<<”an e r r o r has occured during the c a l c u l t i o n ” ;
else
{ x=b . putnecenter () ;

cout << ”An est imate f o r ne at the cente r i s ”
<< x << ”mˆ−3” << endl ;

x=b . putnacenter () ;
cout << ”An est imate f o r na at the cente r i s ”

<< x << ”mˆ−3” << endl ;
x=b . putTecenter () ;
cout << ”An est imate f o r Te at the cente r i s ”

<< x << ”K” << endl ;
x=b . putThcenter () ;
cout << ”An est imate f o r Th at the cente r i s ”

<< x << ”K” << endl ;
x=b . putPressure () ;
cout << ”An est imate f o r p at the cente r i s ”

<< x << ”Pa” <<endl ;
x=b . putChemical () ;
xx=b . putConduction () ;
cout<<”The por t i on o f the energy used f o r heat conduct ion i s ”

<< xx << endl ;
cout<<”The por t i on o f the energy used f o r p a r t i c l e gene ra t i on i s ”

<< x << endl ;
}
return (0) ;

}

Appendix C

The code of the pinching
module

C.1 Header file
#ifndef H EM UNIFORM1D H
#define H EM UNIFORM1D H

#include ”plem/em. h”
#include ”plem/base em . h”

class plBaseEMUniform1dData : public plBaseEMData
{
protected :

void Calcu lateLorentzForce (void) ;
plBaseEMUniform1dData (plModelRegion ∗ reg , plNode & emnode) ;
bool m c a l c l o r e n t z ;
REAL m lo r en t z u r f ;
CGridVar<REAL> m B3 ;

} ;

#endif

C.2 Body file

#include ” p l c o n f i g . h”
#include ”plem/em uniform1d . h”
#include ” p l c o n f i g . h”
#include ”plem/base em . h”
#include ”p l g e n e r i c / f o r c e l n k . h”
#include ”plmath/ cons t s . h”
#include ”p l g r i d / g r id . h”
#include ”p l g r i d / gr idvar . h”

/∗

111

112 APPENDIX C. THE CODE OF THE PINCHING MODULE

∗ I m p l e m e n t a t i o n o f th e L o r e n t z f o r c e c a l c u l a t i o n .
∗ − L o g i c by Bart Broks
∗ − B e a u t i f i c a t i o n by Bart H a r t g e r s

∗/

plBaseEMUniform1dData : : plBaseEMUniform1dData (
plModelRegion ∗ reg , const plNode & emNode)
: plBaseEMData (reg , emNode) ,
m B3(reg , ”B3” , plGrid : : l o c noda l)

{
m B3 .FName()= ”B3” ;
plNode : : c o n s t i t e r a t o r i=emNode . onlyN (”LorentzForce ”) ;
i f (i) {

i f (reg−>Grid()−>coord type != c y l i n d r i c a l)
throw plParserExcept ion (”LorentzForce only supported ”

”on c y l i n d r i c a l g r i d s ”) ;
/// Works o n l y on c y l i n d r i c a l g r i d s

/// Take c a r e i f you implement a new g r i d type

/// t h a t s h o u l d work wi th a L o r e n t z f o r c e ! !

m c a l c l o r e n t z = true ;
m lo r en t z u r f = (∗∗ i) (”URF”) ;

} else {
m c a l c l o r e n t z = fa l se ;
m lo r en t z u r f = 0 ;

}
}

void plBaseEMUniform1dData : : Ca lcu lateLorentzForce (void)
{

/ / / Thi s p i e c e o f code c a l c u l a t e s the L o r e n t z f o r c e .

/ / / The L o r e n t z f o r c e i s a f o r c e t h a t a magne t i c f i e l d e x e r t s on

/ / / a moving c h a r g e d p a r t i c l e .

/ / / In t h i s c a l c u l a t i o n , th e f o l l o w i n g i s assumed :

///

/// − The magne t i c f i e l d i s c a u s e d by the c u r r e n t i t s e l f

/ / / (p i n c h i n g , no e x t e r n a l magne t i c f i e l d s)

/// − The c u r r e n t l o o p i s c l o s e d a t i n f i n i t y

/// − There i s a c y l i n d r i c a l symmetry

/// − The L o r e n t z f o r c e i n the x1−d i r e c t i o n i s n e g l i g i b l e

/// − The L o r e n t z f o r c e i s implemented as a bu lk f o r c e ,

/ / / meaning t h a t the c h a r g e d and n e u t r a l p a r t i c l e s t r a v e l

/ / / t o g e t h e r .

///

/ / / The magne t i c f i e l d i s c a u s e d by t he c u r r e n t t h a t i s s u r r o u n d e d

/ / / by the c o n t r o l volume .

/ / / èAmpre ’ s law i s used to c a l c u l a t e i t s magni tude . Now , t h i s

/ / / magne t i c f i e l d i n t e r a c t s w i th t he c u r r e n t i n the c o n t r o l volume ,

/ / / r e s u l t i n g i n a L o r e n t z f o r c e . The f o r c e d e n s i t y i s

/ / / c a l c u l a t e d and r e t u r n e d .

unsigned i , j ;

C.2. BODY FILE 113

unsigned int N1 = s i g . Grid()−>n1 () ;
unsigned int N2 = s i g . Grid()−>n2 () ;

i f (m c a l c l o r e n t z==true)
{
REAL sumI , I , r , F , l , J , pr , p l , area , rad iu s , l ength , PartCovered ;

for (i =0; i<N1 ; i++)
{

sumI = 0 ;
/ / t h i s g i v e s the t o t a l l e n g t h and r a d i u s o f th e plasma . Seems

/ / we have to do t h i s th e hard way .

for (j =0; j<(N2−1) ; j++)
{ // Thi s p a r t w i l l g e t th e l e n g h t s and g r i d e l e m e n t s and the

// p o s i t i o n o f th e n o d a l p o i n t s .

l ength = s i g . Grid()−>L1(Pos (i , j)) ;
r ad iu s = s i g . Grid()−>L2(Pos (i , j)) ;
r = s i g . Grid()−>dx2 (Pos (i , j)) ∗ rad iu s ;
l = s i g . Grid()−>dx1 (Pos (i , j)) ∗ l ength ;
s i g . Grid()−> g e t p h y s l o c a t i o n (plGrid : : l o c noda l , i , j , p l , pr) ;

/ / Let ’ s c a l c u l a t e I .

J = m Eimposed1 (i , j)∗ s i g (i , j) ;

/ / now , we need to know the volume . . .

i f ((j ==0) | | (j==N2−1))
area = 0 ;

else i f (i ==0)
area = s i g . Grid()−>areaCV (East , i , j) ;

else i f (i==N1−1)
area = s i g . Grid()−>areaCV (West , i , j) ;

else
area = (s i g . Grid()−>areaCV (West , i , j) +

s i g . Grid()−>areaCV (East , i , j)) / 2 ;

I = J∗ area ;

/ / Thi s i s e x a c t . . . Area c a l c u l a t i o n has been c h e c k e d and l o o k s f i n e .

i f (! (area ==0)) PartCovered=(Constant : : p i)∗ ((pr∗ r)−(r ∗ r /4))/ area ;
else PartCovered =1;
i f (PartCovered<0 .1) PartCovered =0.1 ;
i f (PartCovered>0 .9) PartCovered =0.9 ;
sumI += (I ∗PartCovered) ;

// Thi s c a l c u l a t e s th e p a r t o f th e c u r r e n t

// t h a t f l o w s t r o u g h t the c o n t r o l s u r f a c e

// I t i s e x a c t i f t h e n o d a l p o i n t i s i n the

// midd l e o f th e CV ; i t i s h i g h l y a c c u r a t e

// i f i t l i e s between 0 . 3 5 and 0 . 7 o f th e l e n g h t o f th e CV.

/ / Thi s i s Ampere ’ s Law : 2 ∗ p i ∗ r ∗B=mu0∗ I e n c l

114 APPENDIX C. THE CODE OF THE PINCHING MODULE

i f (! j)
m B3(i , j) = 0 ;

else
m B3(i , j) = sumI ∗(Constant : : mu0)/2/(Constant : : p i)/ pr ;

/ / Thi s s h o u l d p r o v i d e us w i th a n i c e magne t i c f i e l d !

/ / I t i s i n the p h i−d i r e c t i o n ! !

/ / Now t h a t we have a B− f i e l d ,

/ / we can us e i t t o c a l c u l a t e

/ / the L o r e n t z f o r c e .

F = − m B3(i , j)∗J ;
sumI += (I ∗(1−PartCovered)) ;
/ / Note t h a t the l ’ s d i s a p p e a r

/ / S i g n ? Thi s i s i n s i d e , I s u p p o s e .

m lor1 (i , j) = 0 ;
m lor2 (i , j) = (m lor2 (i , j)∗(1.0−m lor en t z u r f) +

m lo r en t z u r f ∗F) ;

}
// Thi s p a r t g i v e s a n i c e v a l u e o f th e L o r e n t z

// f o r c e a t th e boundary .

m B3(i , (N2−1))=m B3(i , (N2−2)) ;
m lor1 (i , (N2−1)) = 0;
m lor2 (i , (N2−1)) = m lor2 (i , (N2−2)) ;
//12−08−02 BB

/ / Hack : a nonhomogeneous L o r e n t z f o r c e

/ / i n the c e n t e r i s NOT g o i n g to work .

/ / A l l t e rms i n your momentum b a l a n c e

/ / a r e homogeneous i n the c e n t e r .

/ / So t h e r e i s ”no way ” t h i s w i l l e v e r

/ / s a t i s f y the momentum b a l a n c e .

/ / So , we g i v e the L o r e n t z f o r c e a

/ / homogeneous D i r i c h l e t c o n d i t i o n

/ / b e c a u s e we don ’ t a l l o w f o r an

/ / inward v e l o c i t y i n the c e n t e r

/ / and the Ampere ’ s law s u r f a c e

/ / has s u r f a c e 0 . AND an homogeneous

/ / Neumann , f o r r e a s o n s o u t l i n e d above .

m lor2 (i , 1)=0 ;
}
}
else
{ for (i =0; i<N1 ; i++)
{ for (j =0; j<N2 ; j++)

{ m B3(i , j)=0 .0 ;
m lor1 (i , j) = 0 . 0 ;
m lor2 (i , j) = 0 . 0 ;

}
}
}

}

Appendix D

The analytical model of the
decay in hollow cathode
discharge

In this appendix, the diffusion time constant of a plasma in a cylindrical
geometry will be determined. This is done by solving equation D.1:

∂ne
∂t

= (Df∇2ne) (D.1)

For the solution, the existence of nontrivial solutions of ne(t, r, z) in the form

ne(t, r, z) = T (t)R(r)Z(z) (D.2)

with T (t) a function that depends only on t, R(r) a function that depends only
on r, and Z(z) function that depends only on z, is assumed. This yields a set
of solutions, which can be used to reconstruct the actual solution, that is also
determined by the boundary conditions:

∂ne(0, z, t)
∂r

= ne(br, z, t) = ne(r, 0, t) = ne(r, bz, t) = 0 (D.3)

Substituting equation (D.2) in equation (D.1) yields gives:

∂T

∂t
RZ = −Df

(
T

1
r

∂

∂r

(
r
∂R

∂r

)
Z + TR

∂2Z

∂z2

)
(D.4)

This can be rewritten to

∂T

∂t

1
T

= −Df

(
1
r

∂

∂r

(
r
∂R

∂r

)
1
R

+
∂2Z

∂z2

1
Z

)
(D.5)

This equation must hold for all values of t,r and z. Because there are three parts
in the equation, each only depending on t, r and z, all of these parts have to be
constant for the equation to hold for all t,r and z. This can be made explicit by
separating the equation in:

∂T

∂t

1
T

= −Dfs (D.6)

115

116APPENDIX D. THE ANALYTICAL MODEL OF THE DECAY IN THE HCD

1
r

∂

∂r

(
r
∂R

∂r

)
1
R

= −sr (D.7)

∂2Z

∂z2

1
Z

= −sz (D.8)

s = sr + sz (D.9)
First, equation (D.7) will be solved. This equation can be rewritten to:

r2 ∂
2R

∂r2
+ r

∂R

∂r
+ srr

2R = 0 (D.10)

It can be shown that for these boundary conditions, sr can be written as sr=αr,
with αr a positive number. This will be used to scale r to obtain a dimensionless
equation:

ρ =
αrr

br
(D.11)

Expressing equation (D.10) in terms of ρ:

ρ2 ∂
2R

∂ρ2
+ ρ

∂R

∂ρ
+ ρ2R = 0 (D.12)

This is a special form of the Bessel equation

x2 ∂
2y

∂x2
+ ρ

∂y

∂x
+ (x2 − n2)y = 0 (D.13)

with y a function of x. The solution of this equation is

y = ArJn(x) +BrYn(x) (D.14)

with Ar and Br constants, J is the Bessel function and Y is the Weber function.
This means that the solution of equation (D.12) can be expressed as

R = AJ0(αrx) +BY0(αrx) (D.15)

Because our density must be finite, and Y0 is infinite in 0, Br must be equal to
0. The value of αrx is determined by the boundary condition at r = br. The
Bessel function J(x) has its first zero at x ≈ 2.40 [19], thus, αr is approximatly
equal to 2.40b−1

r . Ar is not determined; in practice, it is determined by the
starting value of the problem. Furthermore, the Bessel function has an infinite
amount of zeros, thus, there are other solutions, for which αr is larger than
2.40b−1

r . These other solutions will be discussed later.

Next, the equation for Z will be solved. This is similiar but somewhat easier
than solving the equation for R. Rewriting equation (D.8) gives:

∂2Z

∂z2
+ α2

zZ = 0 (D.16)

where α2
z = sz. This is a standard differential equation, which has the following

answer:
Z = Az sin(αzz) +Bz cos(αzz) (D.17)

Here, Az and Bz are arbitrary constants. The boundary condition at z = 0 gives
that Bz equals 0. The boundary condition at z = bz gives αz = πb−1

z . There
are also solutions for larger values of αz; however these are not very relevant,
as will be shown later.

117

By solving equation (D.7) and (D.8), we can now obtain a value for s. It is
equal to

s =
(

2.40
br

)2

+
(
π

bz

)2

(D.18)

This value can be substituted in equation D.6 to give:

∂T

∂t
= −Df

((
2.40
br

)2

+
(
π

bz

)2
)
T (D.19)

This equation is easily solved and has the solution

T = Ate
t
τ (D.20)

with At an arbitrary constant and the decay time constant τ equal to

τ =
1

−Df

((
2.40
br

)2 +
(
π
bz

)2) (D.21)

Earlier, it was mentioned that the higher values of αr and αz were less important.
Equation (7.23) shows that these modes decay much faster. Therefore, they will
rapidly disappear, leaving only the lowest-order mode:

T = Ae

(
(2.40
br

)2+(πbz)2
)
J0

(
2.40r
br

)
sin
(
πz

bz

)
(D.22)

118APPENDIX D. THE ANALYTICAL MODEL OF THE DECAY IN THE HCD

Appendix E

The code of the
plKnudsenDiffusion class

class plKnudsenDi f fus ion : public plAmbipo larDi f fus ion
{

public :
p lKnudsenDi f fus ion (const plNode& node ,

const plPart ic leMap & pmap ,
const CBaseRelationMap& rmap)
: p lAmbipo larDi f fus ion (node , pmap , rmap)
, m Part ic leMasses (pmap . s i z e ())
, m DDiffusion (pmap . s i z e ())
, m DKnudsen (pmap . s i z e ())

{
// p a r s e s geometry f a c t o r and d i f f u s i o n l e n g h t .

m K=REAL(node [”Ca l cu la to r ”] (”KnudsenGeometryFactor ”))
∗REAL(node [”Ca l cu la to r ”] (”Di f fus ionLength ”)) ;

for (unsigned ndx = 0 ; ndx < pmap . s i z e () ; ndx++)
{

m Part ic leMasses [ndx]=pmap [ndx]−>Mass () ;
}

// The f o l l o w i n g s e c t i o n , which undoubt l y c o u l d have been

// w r i t t e n more compac t l y , p a r s e s the type o f d i f f u s i o n

// and Knudsen f l o w we a r e u s i n g .

s t r i n g Sd = node [”Ca l cu la to r ”] (”Dif fusionMode ”) ;
s t r i n g S1 = ”Disab le ” ;
s t r i n g S2 = ”Ambipolar ” ;
s t r i n g S3 = ”Standard ” ;
i f (Sd==S1) m DiffusionMode =0;
else i f (Sd==S2) m DiffusionMode =1;
else i f (Sd==S3) m DiffusionMode =2;
else throw plParserExcept ion (” I l l e g a l d i f f u s i o n type s p e c i f i e d ”) ;
s t r i n g S4 = ”Bohm” ;

119

120 APPENDIX E. THE CODE OF THE PLKNUDSENDIFFUSION CLASS

s t r i n g S5 = ”Thermal ” ;
s t r i n g Sk=node [”Ca l cu la to r ”] (”KnudsenMode ”) ;
i f (Sk==S1) m KnudsenMode=0;
else i f (Sk==S4) m KnudsenMode=1;
else i f (Sk==S5) m KnudsenMode=2;
else throw plParserExcept ion (” I l l e g a l Knudsen v e l o c i t y t y p e s p e c i f i e d ”) ;
i f (! (m DiffusionMode | | m KnudsenMode))

throw plParserExcept ion (”No d i f f u s i o n c o e f f i c i e n t de f ined ”) ;
//No d i f f u s i o n a t a l l w i l l mean doom f o r the c a l c u a l t i o n .

}

virtual void DoCalculate (const p l Pa r t i c l e V a lu e<REAL> & r e s ,
const plCrossSect ionMatr ix & cs ,
const plConstValueRef<REAL> & point) ;

private :
s td : : vec to r<REAL> m Part ic leMasses ;
// The mas s e s o f th e v a r i o u s s p e c i e s .

std : : vec to r<REAL> m DDiffusion ; / / The d i f f u s i o n c o e f f i c i e n t

std : : vec to r<REAL> m DKnudsen ; / / The e f f u s i o n c o e f f i c i e n t

REAL m K ; // The Knudsen pa ramet e r .

unsigned m DiffusionMode , m KnudsenMode ;
// D i f f u s i o n modes :

/ / 0 : D i s a b l e d . Knudsen o n l y

/ / 1 : Ambipo lar (d e f a u l t)

/ / 2 : S tandard

// Knudsen modes :

/ / 0 : D i s a b l e d . D i f f u s i o n o n l y

/ / 1 : With Bohm v e l o c i t y (d e f a u l t)

/ / 2 : With t h e r m a l v e l o c i t y

void Calcu la teDDi f fu s i on (const p lPa r t i c l e V a l u e<REAL> & r e s ,
const plCrossSect ionMatr ix & cs ,
const plConstValueRef<REAL> & point) ;
// C a l u l a t e s the d i f f u s i o n c o e f f i c i e n t .

void CalculateDKnudsen (const p lPa r t i c l e V a lu e<REAL> & r e s ,
const plConstValueRef<REAL> & point) ;
// C a l c u l a t e s the Knudsen d i f f u s i o n c o e f f i c i e n t .

} ;

void plKnudsenDi f fus ion : : DoCalculate (const p l Pa r t i c l e V a lu e<REAL> & r e s ,
const plCrossSect ionMatr ix & cs ,
const plConstValueRef<REAL> & point)

{
i f (m DiffusionMode && m KnudsenMode) // Both Knudsen and D i f f u s i o n

{
Calcu la teDDi f fu s i on (r e s , c s , po int) ;
CalculateDKnudsen (r e s , po int) ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)

121

{
r e s [ndx] =(m DDiffusion [ndx]∗m DKnudsen [ndx]) /

(m DDiffusion [ndx]+m DKnudsen [ndx]) ;
// r e c i p r o c a l a d d i t i o n . I f t h e denomina to r would be 0 ,

// so would the t e m p e r a t u r e .

// The c a l c u l a t i o n i s messed up anyway ,

// i n t h a t c a s e , s o no e r r o r c h e c k i n g .

}
}
else i f (! m DiffusionMode) // Only Knudsen

{
CalculateDKnudsen (r e s , po int) ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)
{

r e s [ndx] = m DKnudsen [ndx] ;
}

}
else // Only d i f f u s i o n

{
Calcu la teDDi f fu s i on (r e s , c s , po int) ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)
{

r e s [ndx] = m DDiffusion [ndx] ;
}

}

}

void plKnudsenDi f fus ion : : Ca l cu la t eDDi f fu s i on (
const p lPa r t i c l e V a lu e<REAL> & r e s ,
const plCrossSect ionMatr ix & cs ,
const plConstValueRef<REAL> & point)

{
i f (m DiffusionMode==1) // a m b i p o l a r d i f f u s i o n

{ plAmbipo larDi f fus ion : : DoCalculate (r e s , c s , po int) ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)
{

m DDiffusion [ndx] = r e s [ndx] ;
}

}
else / / s t a n d a r d d i f f u s i o n .

{ p l D i f f u s i o n : : DoCalculate (r e s , c s , po int) ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)
{

m DDiffusion [ndx] = r e s [ndx] ;
}

}
}

void plKnudsenDi f fus ion : : CalculateDKnudsen (

122 APPENDIX E. THE CODE OF THE PLKNUDSENDIFFUSION CLASS

const p lPa r t i c l e V a l u e<REAL> & r e s ,
const plConstValueRef<REAL> & point)

{
REAL vth ,M,T;
unsigned elNdx = P a r t i c l e s () . GetElectronNdx () ;
for (unsigned ndx = 0 ; ndx < r e s . s i z e () ; ndx++)
{

T=plAcces so r : : Temperature (po int) [ndx] ; // Thermal v e l o c i t y

i f (m KnudsenMode==1) //Bohm v e l o c i t y

{
i f (P a r t i c l e s () [ndx]−>ChargeNr () > 0)

T=plAcces so r : : Temperature (po int) [elNdx] ;
// o n l y app ly f o r i o n s .

// e l e c t r o n d i f f u s i o n i s n ’ t t r e a t e d , s o t h i s

// i s s a f e− f o r now . One c o u l d have a l e n g h t y

// d i s c u s s i o n about the f a c t t h a t the i o n

// t e m p e r a t u r e may a l s o p l a y a r o l e .

// Liebermann and L i c h t e n b e r g d i s c u s s

// t h i s f o r a s h e a t h . I t i s p r o b a b l y s a f e to i g n o r e ,

// b e c a u s e p l a smas i n the Knudsen r e g i m e

/ / a r e v e r y l i k e l y to be f a r from LTE .

}
M=m Part ic leMasses [ndx] ;
vth=MeanVelocity (T,M) ;
m DKnudsen [ndx]=1.3333333∗ vth∗m K;

}
}

REGISTER PROVIDER
(plPartValTransCalcu lator , p lKnudsenDi f fus ion , ”KnudsenDif fus ion ”) ;

Bibliography

[1] M. Mitchner and C.H. Kruger, editors. Partially Ionized Gases. (New York:
Wiley & Sons), 1973. 1, 4.3.1, 4.3.3, 6.4.2

[2] E.Esaray. Overview of plasma-based accelerator concepts. IEEE Trans.
Plasma Sci, 24(252), 1996. 1.2

[3] S.V. Patankar, editor. Numerical Heat Transfer and Fluid Flow. New York:
McGraw-Hill, 1980. 1.4, 3.2.1, 3.2.2, 3.2.4, 5.1.3

[4] J.A.M. van der Mullen. Phys. Rep., 191:109, 1990. 1.4, 4.2

[5] J.P.Boeuf and L.C.Pitchford. Pseudospark discharges via computer simu-
lation. IEEE Transactions on Plasma Science, 9(2), 1991. 2.3

[6] L.C.Pitchford, N. Ouadoudi, J.P.Boeuf, M.Legentil, V. Puech, J.C. Thomaz
Jr., and M.A. Gundersen. Triggered breakdown in hollow cathode (pseu-
dospark) discharges. J. Appl. Phys., 78(1), july 1995. 2.3

[7] Vladimir Arsov. Copper vapour density during the prebreakdown phases
of a pseudospark discharge measured with laser induced fluorescence. PhD
thesis, University of Erlangen-Nürnberg, 2001. 2.3

[8] D.A. Benoy. Ph.D. thesis, Eindhoven University of Technology, 1993. 3.1

[9] Ger Janssen. Design of a General Plasma Simulation Model. PhD thesis,
Eindhoven University of Technology, 2001. 3.1, 3.2.2, 11, 6.4.2

[10] Jan van Dijk. Modelling of Plasma Light Sources — an object-orented
approach. Ph.D. thesis, Eindhoven University of Technology, 2001. 3.1

[11] K.C.Karki and S.V. Patankar. AIAA Journal, 27:1167, 1989. 5

[12] J.A.M. van der Mullen. PhD thesis, 1986. 11, 3.3.2

[13] G. Verkerk, J.B. Broens, W. Kranendonk, J.L. Sikkema F.J. van der Puijl,
and C.W. Stam, editors. BINAS. Wolters-Noordhoff, 1986. 3.3.1, 3.3.1

[14] M.A. Lieberman and A.J. Lichtenberg, editors. Principles of Plasma Dis-
charges and Materials Processing. (New York: Wiley & Sons), 1994. 4.2,
7.2.2, 25, 25, 25, 26

[15] D.C. Schram and M.C.M. van de Sanden. Plasma physics lecture notes,
1997. 6.4.2

123

124 BIBLIOGRAPHY

[16] E.A. Mason and A.P. Malinauskas. Gas Transport in Porous Media: The
Dusty-Gas Model. Elsevier, 1983. 7.1.2, 25, 7.2.3

[17] E.H. Holt and R.E. Haskell, editors. Foundations of Plasma Dynamics.
(New York: The Macmillan Company), 1965. 7.2.1, 7.2.1

[18] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), july 1965. A

[19] I.N.Bronstein and K.A.Semendjaev. Taschenbuch der Mathematik. Verlag
Nauka, 1991. D

Acknowledgements

The work done here could not have been done without the help of many
people. At this opportunity, I would like to thank some of them.

First of all, I would like to thank Joost van de Mullen. Much of the insights
I gained during this graduation come from him. The early-morning discussions
we had provided me with the directions I needed to come to results. My under-
standing of plasma physics is largely shaped by him. He is also acknowledged
for correcting and structuring this report.

My two direct supervisors Bart Hartgers and Kurt Garloff, are acknowledged
for the time they spent supervising me. Especially in the beginning, when
PLASIMO, numerical plasma physics, Linux and C++ were still areas of which
I knew little, their patient supervision was invaluable.

Joost’s other students were great co-workers. Michiel, Xiao-Yan, Erik, Wouter,
Jan, Harm, Colin and Mark not only were good discussion partners, but also
helped provide the pleasant atmosphere among the modelers.

Jeroen Jonkers is acknowledged for providing the interesting challenge of mod-
eling the decay of the plasma in the hollow cathode discharge. While the problem
seemed easy enough at first, it prooved to be much more difficult an rich than
originally anticipated.

Another important contribution should not be forgotten: the thousends of
creators of the free software which I used to create this report and operate my
computer. When one receives such useful tools as these for free, the least one
can do is say an earnest “Thank You”.

125

	Summary
	Introduction
	Outline of the project
	High power density plasmas
	PLASIMO
	The hollow cathode discharge

	The contents of this report

	Introduction to HCDs
	Introduction
	Hollow cathodes in EUV lithography
	Design
	Gas considerations

	Operation
	Summary

	A brief tour of PLASIMO
	Introduction
	Transport physics in PLASIMO
	The -equation
	Examples of the -equation
	The -equation in PLASIMO
	Increasingly complex systems

	Examples of PLASIMO models
	Fluid Flow
	An Ar LTE plasma

	Creating a 0-D model using DBR
	Introduction
	Disturbed Bilateral Relations
	The electron particle balance
	The electron energy balance
	The heavy particle energy balance

	Using the DBR to analyze a plasma
	An equation for kheat
	An equation for kion
	An equation for kcond
	An equation for krec
	An equation for D*
	Conclusions

	The program
	The input
	The calculation
	The output

	DBR and PLASIMO
	Predicting trends with the DBR program
	Performance

	Scaling laws and DBR
	Conclusions

	From NLTE to LTE
	Introduction
	Increasing The Power Density
	Increasing Pressure
	Computational Speed

	Deviations between the LTE and NLTE approaches
	The models
	The cause of the deviations between NLTE and LTE
	Conclusions

	Implementing pinching in PLASIMO
	Introduction
	The Lorentz force in PLASIMO
	The axisymmetric grid

	General theory
	The magnetic field
	The Lorentz force

	Implementation in the code
	Electromagnetism in PLASIMO
	The implementation of the Lorentz force

	Testing the code
	Validation against an analytical solution
	Testing the Lorentz force for a cascaded arc

	Conclusions

	Simulating plasma decay in an HCD
	Introduction
	Diffusion
	Contents of this chapter

	Theory
	Diffusion
	Knudsen flow
	The resistor model
	An analytical approach to the decay in the hollow cathode
	Conclusion

	Implementation
	The design criteria
	The code

	Validation
	Introduction
	A simple model for the decay in the hollow cathode discharge
	Results of the validation
	Conclusion

	The model used for the hollow cathode
	The diffusion calculator
	The boundary condition
	The borehole
	The pressure in the hollow cathode
	Using a free electron density

	Varying the design parameters
	Varying the size
	Varying the radius

	Conclusions

	Conclusions
	Conclusions of chapter 3
	Conclusions of chapter 4
	Conclusions of chapter 5
	Conclusions of chapter 6
	Conclusions of chapter 7
	General conclusions and recommendations

	Technology assessment
	The code of the DBR program
	Header file
	Body file

	The code of the pinching module
	Header file
	Body file

	The analytical model of the decay in the HCD
	The code of the plKnudsenDiffusion class
	Bibliography
	Acknowledgements

